
Subgraphormer: Unifying Subgraph
GNNs and Graph Transformers via Graph

Products

GBS

(Technion)

Beatrice Bevilacqua

(Purdue)

Haggai Maron

(Technion, Nvidia)

Outline

• Subgraph GNNs

• Graph Transformers

• Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via
Graph Products

Subgraph GNNs

• Main idea - graphs as sets of subgraphs

• Motivation: even if MPNNs can’t distinguish two graphs, their subgraphs 
might be easily separable

Taken from [1][1] Bevi. et al. 2022

Subgraph GNNs

• Main idea - graphs as sets of subgraphs

• Motivation: even if MPNNs can’t distinguish two graphs, their subgraphs 
might be easily separable

[1] Bevi. et al. 2022 Taken from [1]

Subgraph GNNs

• How can the graph representations be learned?

• Map a graph into a set of subgraphs (bag) via selection policy

• Process the bag in a principled way, e.g., MPNN on each subgraph
followed by pooling (DS-GNN [1])

[1] Bevi. et al. 2022

For Isomorphic graphs the bag must (ideally) be the same

MPNN

Subgraph Generation Policy
- Node marking
- Node-deletion
- …

• Recipe:

• Positional Encodings (PE)

• Attention-based aggregations

Graph Transformers

• Positional Encodings (PE):

• Laplacian:

• Eigendecomposition:

• Use rows of U as node features — PE

L = D − A

L = UTΛU

Graph Transformers

Taken from [1]

U =

[1] Ramp. et al. 2022

Attention

GAT [1]

GATV2 [2]

Standard Attention [3]

Sparse Attention [4]

Graph Transformers
G = (X, A)

X

!!

!"

!#

Q

K

V

. ≡ .(Q, K, A)

.V = X′

[1] Velic. et al., 2018

[2] Brod. Et al., 2021

[3] Vasw et al., 2021

[4] Krzy. Et al., 2021

Subgraphormer
Main idea

• Two main components:

• Attention based aggregations

• Subgraph Positional encodings

Subgraphormer
Subgraph GNNs as MPNNs

Notation:

 - the feature of node in Subgraph 𝒳(s, v) v s

Subgraphormer
Subgraph GNNs as MPNNs

Notation:

 - the feature of node in Subgraph 𝒳(s, v) v s

• The following update is the most expressive* Subgraph 
GNN (GNN-SSWL+ [1]):

𝒳(s, v)t+1 = f t(𝒳(s, v)t, 𝒳(v, v)t, {𝒳(s, v′)t}v′ ∼Gv, {𝒳(s′ , v)t}s′ ∼Gs,)

* Only internal/External are required for Maximal expressivity[1] Zhang et al. 2023

Subgraphormer
Subgraph GNNs as MPNNs

𝒳(s, v)t+1 = f t(𝒳(s, v)t, 𝒳(v, v)t, {𝒳(s, v′)t}v′ ∼Gv, {𝒳(s′ , v)t}s′ ∼Gs,)

External subgraph
connectivity

Internal subgraph
connectivity

Point-wise Update

* Only internal/External are required for Maximal expressivity

Subgraphormer
Subgraph GNNs as MPNNs

Proposition 3.1 (GNN-SSWL+ as MPNNs):

GNN-SSWL+ update equation can be realized via RGCN layers on this product graph.

RGCN()∼𝒳(s, v)t+1 = f t(𝒳(s, v)t, 𝒳(v, v)t, {𝒳(s, v′)t}v′ ∼Gv, {𝒳(s′ , v)t}s′ ∼Gs,)

External subgraph
connectivity

Internal subgraph
connectivity

Point-wise Update

Definition (Product Graph):

A product graph is a heterogeneous graph, defined by a feature matrix , and a set of adjacency matrices, .𝒳 ∈ ℝn2×d 𝒜 ∈ ℝn2×n2

• Subgraph GNNs — just MPNNs on a product graph!

• Don’t change the MPNN — change the graph!

[1] Schlic. et al. 2017

[1]

Subgraphormer
Subgraph-Based PE

𝒜G 𝒜GS

Subgraph SE & PE
block SABB SABB SABB Pooling…

Product Graph PE

Subgraph Attention Block Pooling

Node Marking

X
X

X
X

X X X X

X X X
X X X

X X X
X X X

Internal External Point

Product Graph PE
& Node Marking Subgraph Attention Block Pooling

v

s

Pool

Pool

v

s

× $Product Graph
Construction

Product Graph
Construction

Subgraph SE & PE
block SABB SABB SABB Pooling…

Product Graph PE

Subgraph Attention Block Pooling

Node Marking

X
X

X
X

X X X X

X X X
X X X

X X X
X X X

Internal External Point

Product Graph PE
& Node Marking Subgraph Attention Block Pooling

v

s

Pool

Pool

v

s

× $Product Graph
Construction

Product Graph
Construction

× (

Subgraph-based PE

Subgraphormer
Subgraph-Based PE

𝒜G 𝒜GS• What is the challenge?

1. Adjacency: Which adjacency should we use?

 — hold information about the original graph’s topology.

2. Efficiency: , applying standard eigendecomposition is
not an option —

𝒜G, 𝒜GS

𝒜G, 𝒜GS ∈ ℝn2×n2

𝒪(n4 ⋅ k)

External subgraph
connectivity

Internal subgraph
connectivity

Point-wise Update

𝒜G 𝒜GS

Subgraphormer
Subgraph-Based PE — Graph Cartesian product

𝒜G 𝒜GS• with adjacency

• with adjacency

• Cartesian Product Graph

• Vertex set

•

• and

• and

G1 = (V1, E1) A1

G2 = (V2, E2) A2

G1 □ G2

VG1□G2
≜ V1 × V2

(x, y) ∼G1□G2
(x′ , y′) ⟺

x = x′ y ∼G2
y′

y = y′ x ∼G1
x′

G1 = (V1, E1)

G2 = (V2, E2)

G1 □ G2

A2 ⊗ I𝒜G1□G2
= I ⊗ A1+

• The internal and external connectivities have 
a special structure

Subgraphormer
Subgraph-Based PE — Graph Cartesian product

𝒜G 𝒜GSG1 = (V1, E1)

G2 = (V2, E2)

G1 □ G2

A2 ⊗ I I ⊗ A1𝒜G1□G2
= +External subgraph

connectivity
Internal subgraph

connectivity

𝒜G 𝒜GS

• The internal and external connectivities have 
a special structure

Subgraphormer
Subgraph-Based PE — Graph Cartesian product

𝒜G 𝒜GSG1 = (V1, E1)

G2 = (V2, E2)

G1 □ G2

A2 ⊗ I I ⊗ A1𝒜G1□G2
= +External subgraph

connectivity
Internal subgraph

connectivity

𝒜G = I ⊗ A 𝒜GS = A ⊗ I

Proposition 3.2:

Taking we get internal and external adjacencies

G □ G

𝒜G□G =
A⊗I⏞
AGS +

I⊗A⏞
AG

• The internal and external connectivities have 
a special structure

Subgraphormer
Subgraph-Based PE — Graph Cartesian product

𝒜G 𝒜GS

External subgraph
connectivity

Internal subgraph
connectivity

𝒜G = I ⊗ A 𝒜GS = A ⊗ I

Proposition 3.2:

Taking we get internal and external adjacencies

G □ G

𝒜G□G =
A⊗I⏞
AGS +

I⊗A⏞
AG

Proposition (Product Graph eigendecomposition) [1]: The eigenvectors and eigenvalues
of are where are the eigenvectors and
eigenvalues of the Laplacian matrix of .

ℒG□G {(vi ⊗ vj, λi + λj)}n2

i,j=1 {(vi, λi)}n
i=1

G
⇒ Only requires Eigendecomposition

of the original (smaller) graph!

[1] Barik et al. 2015

• Visualization of the first (non - trivial) eigenvector

Subgraphormer
Subgraph-Based PE — Visualization

Four different colors

Ten different colors!

Subgraphormer
Experiments
Can Subgraphormer outperform Subgraph GNNs and Graph  
Transformers in real-world benchmarks?

Thanks for listening!

