

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Beatrice Bevilacqua (Purdue)

Haggai Maron (Technion, Nvidia)

Outline

- Subgraph GNNs
- Graph Transformers
- **Graph Products**

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via

Subgraph GNNs

- Main idea graphs as sets of subgraphs
- Motivation: even if MPNNs can't distinguish two graphs, their subgraphs might be easily separable

Subgraph GNNs

- Main idea graphs as sets of subgraphs \bullet
- **Motivation:** even if MPNNs can't distinguish two graphs, their subgraphs \bullet might be easily separable

Taken from [1]

Subgraph GNNs

- How can the graph representations be learned?
- Map a graph into a set of subgraphs (bag) via selection policy For Isomorphic graphs the bag must (ideally) be the same
- Process the bag in a principled way, e.g., MPNN on each subgraph followed by pooling (DS-GNN [1])

Subgraph Generation Policy • • •

[1] Bevi. et al. 2022

Graph Transformers

- Recipe:
 - Positional Encodings (PE)
 - Attention-based aggregations

Graph Transformers

- Positional Encodings (PE):
 - Laplacian: L = D A
 - Eigendecomposition: $L = U^T \Lambda U$
 - Use rows of U as node features PE

[1] Ramp. et al. 2022

Taken from [1]

s - PE

Graph Transformers

- Attention
 - GAT [1]
 - GATV2 [2]
 - Standard Attention [3]
 - Sparse Attention [4]

[1] Velic. et al., 2018
[2] Brod. Et al., 2021
[3] Vasw et al., 2021
[4] Krzy. Et al., 2021

Subgraphormer Main idea

- Two main components:
 - Attention based aggregations
 - Subgraph Positional encodings

Subgraph GNNs as MPNNs

Notation: $\mathcal{X}(s, v)$ – the feature of node v in Subgraph s

Subgraphormer **Subgraph GNNs as MPNNs**

Notation: $\mathscr{X}(s,v)$ – the feature of node v in Subgraph s

 The following update is the most expressive* Subgraph GNN (GNN-SSWL+ [1]):

 $\mathscr{X}(s,v)^{t+1} = f^t \Big(\mathscr{X}(s,v)^t, \mathscr{X}(v,v)^t, \{ \mathscr{X}(v,v)^t$

[1] Zhang et al. 2023

$$\{(s,v')^t\}_{v'\sim_G v}, \{\mathscr{X}(s',v)^t\}_{s'\sim_G s},$$

* Only internal/External are required for Maximal expressivity

Subgraphormer **Subgraph GNNs as MPNNs**

 $\mathscr{X}(s,v)^{t+1} = f^t \Big(\mathscr{X}(s,v)^t, \mathscr{X}(v,v)^t, \{\mathscr{X}(s,v')^t\}_{v' \sim_G v}, \{\mathscr{X}(s',v)^t\}_{s' \sim_G S}, \Big)$ Point-wise Update S

* Only internal/External are required for Maximal expressivity

Subgraphormer **Subgraph GNNs as MPNNs**

- Subgraph GNNs just MPNNs on a product graph!
- Don't change the MPNN change the graph!

Definition (Product Graph):

Proposition 3.1 (GNN-SSWL+ as MPNNs): GNN-SSWL+ update equation can be realized via RGCN layers on this product graph.

$$\mathscr{X}(s,v)^{t+1} = f^t \bigg(\mathscr{X}(s,v)^t, \mathscr{X}(v,v)^t, \{\mathscr{X}(s,v')^t\}_{v' \sim_G v}, \{\mathscr{X}(s',v)^t\}_{s' \sim_G s}, \bigg)$$

[1] Schlic. et al. 2017

A product graph is a heterogeneous graph, defined by a feature matrix $\mathscr{X} \in \mathbb{R}^{n^2 \times d}$, and a set of adjacency matrices, $\mathscr{A} \in \mathbb{R}^{n^2 \times n^2}$.

Subgraph-Based PE

Subgraphormer **Subgraph-Based PE**

- What is the challenge?
 - 1. Adjacency: Which adjacency should we use?

 $\mathscr{A}_G, \mathscr{A}_{GS}$ — hold information about the original graph's topology.

2. Efficiency: $\mathscr{A}_G, \mathscr{A}_G \in \mathbb{R}^{n^2 \times n^2}$, applying standard eigendecomposition is not an option $- \mathcal{O}(n^4 \cdot k)$

Subgraph-Based PE — Graph Cartesian product

- $G_1 = (V_1, E_1)$ with adjacency A_1
- $G_2 = (V_2, E_2)$ with adjacency A_2
- Cartesian Product Graph $G_1 \square G_2$
- Vertex set $V_{G_1 \square G_2} \triangleq V_1 \times V_2$
- $(x, y) \sim_{G_1 \square G_2} (x', y') \iff$

•
$$x = x'$$
 and $y \sim_{G_2} y'$

•
$$y = y'$$
 and $x \sim_{G_1} x'$

 $\mathscr{A}_{G_1 \square G_2} = A_2 \otimes I + I \otimes A_1$

Subgraphormer Subgraph-Based PE — Graph Cartesian product

 The internal and external connectivities have a special structure

Subgraphormer Subgraph-Based PE — Graph Cartesian product

 The internal and external connectivities have a special structure

Proposition 3.2: Taking $G \square G$ we get internal and external adjacencies $\mathscr{A}_{G \square G} = \overbrace{A_{GS}}^{A \otimes I} + \overbrace{A_{G}}^{I \otimes A}$

Subgraphormer Subgraph-Based PE — Graph Cartesian product

 The internal and external connectivities have a special structure

Proposition (Product Graph eigendecomposition) [1]: The eigenvectors and eigenvalues of $\mathscr{L}_{G \square G}$ are $\{(v_i \otimes v_j, \lambda_i + \lambda_j)\}_{i,j=1}^{n^2}$ where $\{(v_i, \lambda_j)\}_{i=1}^n$ are the eigenvectors and eigenvalues of the Laplacian matrix of G.

[1] Barik et al. 2015

Subgraphormer **Subgraph-Based PE** — Visualization

Visualization of the first (non - trivial) eigenvector

Four different colors

Ten different colors!

Subgraphormer Experiments

Can Subgraphormer outperform Subgraph GNNs and Graph Transformers in real-world benchmarks?

Table 1: On the ZINC datasets, Subgraphormer outper-formsGraph TransformersandSubgraph GNNs. Thetop three results are reported as First, Second, and Third.

Model \downarrow / Dataset \rightarrow

GSN (Bouritsas et al., 2022) CIN (small) (Bodnar et al., 2021) GIN (Xu et al., 2018) PPGN++(6) (Puny et al., 2023)

SAN (Kreuzer et al., 2021) URPE (Luo et al., 2022) GPS (Rampášek et al., 2022) Graphormer (Ying et al., 2021) Graphormer-GD (Zhang et al., 2023b) K-Subgraph SAT (Chen et al., 2022)

NGNN (Zhang and Li, 2021) DS-GNN (Bevilacqua et al., 2022) DSS-GNN (Bevilacqua et al., 2022) GNN-AK (Zhao et al., 2022) GNN-AK+ (Zhao et al., 2022) SUN (Frasca et al., 2022) SUN (Frasca et al., 2022) DS-GNN (Bevilacqua et al., 2023) GNN-SSWL (Zhang et al., 2023a) GNN-SSWL+ (Zhang et al., 2023a)

Subgraphormer Subgraphormer + PE

Param.	ZINC-12к (MAE↓)	ZINC-FULL (MAE ↓)
500k	0.101 ± 0.010	
100k	$0.094{\pm}0.004$	$0.044{\pm}0.003$
500k	$0.163 {\pm} 0.004$	-
500k	$0.071 {\pm} 0.001$	0.020 ±0.001
509k	$0.139 {\pm} 0.006$	-
492k	$0.086 {\pm} 0.007$	$0.028 {\pm} 0.002$
424k	0.070±0.004	-
489k	$0.122{\pm}0.006$	$0.052{\pm}0.005$
503k	$0.081 {\pm} 0.009$	$0.025 {\pm} 0.004$
523k	$0.094{\pm}0.008$	-
500k	$0.111 {\pm} 0.003$	$0.029 {\pm} 0.001$
100k	$0.116 {\pm} 0.009$	-
100k	$0.102{\pm}0.003$	$0.029 {\pm} 0.003$
500k	$0.105 {\pm} 0.010$	-
500k	$0.091{\pm}0.002$	-
526k	$0.083 {\pm} 0.003$	$0.024{\pm}0.003$
500k	$0.154{\pm}0.008$	-
500k	$0.087 {\pm} 0.003$	-
274k	$0.082{\pm}0.003$	$0.026 {\pm} 0.001$
387k	0.070 ± 0.005	0.022±0.001
293k	0.067±0.007	0 . 020 ±0.002
293k	0.063±0.001	0.023±0.001

Thanks for listening!

