

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

GBS (Technion)

Beatrice Bevilacqua (Purdue)

Haggai Maron (Technion, Nvidia)

Outline

- Subgraph GNNs
- Graph Transformers
- **Graph Products**

• Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via

Subgraph GNNs

- **• Main idea** graphs as sets of subgraphs
- **Motivation:** even if MPNNs can't distinguish two graphs, their subgraphs might be easily separable

Subgraph GNNs

- **• Main idea** graphs as sets of subgraphs
- **Motivation:** even if MPNNs can't distinguish two graphs, their subgraphs might be easily separable

Subgraph GNNs

- How can the graph representations be learned?
- Map a graph into a set of subgraphs (bag) via selection policy For Isomorphic graphs the bag must (ideally) be the same
- Process the bag in a principled way, e.g., MPNN on each subgraph followed by pooling (DS-GNN [1])

Subgraph Generation Policy $\rightarrow \rightarrow \rightarrow$

[1] Bevi. et al. 2022

- **• Recipe:**
	- Positional Encodings (PE)
	- Attention-based aggregations

Graph Transformers

- Positional Encodings (PE):
	- Laplacian: $L = D A$
	- Eigendecomposition: $L = U^T \Lambda U$
	- Use rows of U as node features PE

Graph Transformers

Taken from [1]

[1] Ramp. et al. 2022

- Attention
	- GAT [1]
	- GATV2 [2]
	- Standard Attention [3]
	- Sparse Attention [4]

Graph Transformers

[1] Velic. et al., 2018 [2] Brod. Et al., 2021 [3] Vasw et al., 2021 [4] Krzy. Et al., 2021

Subgraphormer Main idea

- Two main components:
	- Attention based aggregations
	- Subgraph Positional encodings

Notation: $\mathscr{X}(s, v)$ - the feature of node v in Subgraph s

Notation: $\mathscr{X}(s, v)$ - the feature of node *v* in Subgraph *s*

• The following update is the most expressive* Subgraph GNN (GNN-SSWL+ [1]):

 $(s, v)^{t+1} = f^t$ $\mathscr{X}(s, v)$ *t* $\mathscr{X}(v, v)$ *t* , $\{ \mathscr{X}(s, v') \}$

$$
\mathbf{S}^{\top}
$$

$$
(s, \nu')^t\}_{\nu' \sim_{G} \nu}, \{\mathscr{X}(s', \nu)^t\}_{s' \sim_{G} s},
$$

[1] Zhang et al. 2023 * Only internal/External are required for Maximal expressivity

* Only internal/External are required for Maximal expressivity

- Subgraph GNNs just MPNNs on a product graph!
- Don't change the MPNN change the graph!

Proposition 3.1 (GNN-SSWL+ as MPNNs): GNN-SSWL+ update equation can be realized via RGCN layers on this product graph.

$$
\mathscr{X}(s,v)^{t+1} = f^t\bigg(\mathscr{X}(s,v)^t,\mathscr{X}(v,v)^t,\{\mathscr{X}(s,v)^t\}_{v \sim_G v},\{\mathscr{X}(s',v)^t\}_{s' \sim_G s},\bigg) \quad \bigg\sim
$$

Definition (Product Graph):

[1] Schlic. et al. 2017

A product graph is a heterogeneous graph, defined by a feature matrix $\mathscr{X}\in\mathbb{R}^{n^2\times d}$, and a **set** of adjacency matrices, $\mathscr{A}\in\mathbb{R}^{n^2\times n^2}.$

Subgraphormer Subgraph-Based PE \bullet - \bullet Product \bullet - \bullet - \bullet - \bullet anh Bocad DE

Subgraphormer Subgraph-Based PE

- - 1. Adjacency: Which adjacency should we use?

 \mathcal{G} , \mathscr{A}_{G^S} – hold information about the original graph's topology.

not an option — G , $\mathscr{A}_{G^S} \in \mathbb{R}^{n^2 \times n^2}$ $(n^4 \cdot k)$

-
- 2. Efficiency: $\mathscr{A}_G, \mathscr{A}_{G^S} \in \mathbb{R}^{n^2 \times n^2}$, applying standard eigendecomposition is

Subgraphormer Subgraph-Based PE — Graph Cartesian product

- $G_1 = (V_1, E_1)$ with adjacency A_1
- $G_2 = (V_2, E_2)$ with adjacency A_2
- Cartesian Product Graph $G_1 \square G_2$
- Vertex set $V_{G_1 \square G_2} \triangleq V_1 \times V_2$
- \bullet (*x*, *y*) ∼_{*G*1□*G*₂} (*x'*, *y'*) ⇔

•
$$
x = x'
$$
 and $y \sim_{G_2} y'$

•
$$
y = y'
$$
 and $x \sim_{G_1} x'$

 $G_1 \Box G_2 = A_2 \otimes I + I \otimes A_1$

• The internal and external connectivities have a special structure

Subgraphormer Subgraph-Based PE — Graph Cartesian product

• The internal and external connectivities have a special structure

Subgraphormer Subgraph-Based PE — Graph Cartesian product

Proposition 3.2: Taking $G \prod G$ we get internal and external adjacencies $G \square G$ ⁼ $\overline{A\otimes I}$ *A*⊗*I* A_{G^S} + <u>I</u>QA *I*⊗*A* A_G

• The internal and external connectivities have a special structure

Subgraphormer Subgraph-Based PE — Graph Cartesian product

Proposition (Product Graph eigendecomposition) [1]: The eigenvectors and eigenvalues of $\mathscr{L}_{G\Box G}$ are $\{(v_i\otimes v_j,\lambda_i+\lambda_j)\}_{i,j=1}^{n^2}$ where $\{(v_i,\lambda_i)\}_{i=1}^n$ are the eigenvectors and eigenvalues of the Laplacian matrix of $G.$

[1] Barik et al. 2015

Subgraphormer Subgraph-Based PE — Visualization

• Visualization of the first (non - trivial) eigenvector

Four different colors

Ten different colors!

Subgraphormer Experiments

Can Subgraphormer outperform Subgraph GNNs and Graph Transformers in real-world benchmarks?

Table 1: On the ZINC datasets, Subgraphormer outperforms Graph Transformers and Subgraph GNNs. The top three results are reported as First, Second, and Third.

Model \downarrow / Dataset \rightarrow

GSN (Bouritsas et al., 2022) CIN (small) (Bodnar et al., 2021) GIN (Xu et al., 2018) PPGN++ (6) (Puny et al., 2023)

SAN (Kreuzer et al., 2021) **URPE** (Luo et al., 2022) GPS (Rampášek et al., 2022) Graphormer (Ying et al., 2021) Graphormer-GD (Zhang et al., 2023b) K-Subgraph SAT (Chen et al., 2022)

NGNN (Zhang and Li, 2021) DS-GNN (Bevilacqua et al., 2022) DSS-GNN (Bevilacqua et al., 2022) GNN-AK (Zhao et al., 2022) GNN-AK+ (Zhao et al., 2022) SUN (Frasca et al., 2022) OSAN (Qian et al., 2022) DS-GNN (Bevilacqua et al., 2023) GNN-SSWL (Zhang et al., 2023a) GNN-SSWL+ (Zhang et al., 2023a)

Subgraphormer Subgraphormer + PE

Thanks for listening!

