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Introduction

Scan for paper Scan for Repo.

The study introduces Coverage-BasedDetection (CBD) for detecting distribution shifts
in deep neural networks, focusing on continuous monitoring to identify deviations in

input data during operational phases.

Problem formulation and goal

We are given a pretrained model f , trained on a labeled set, Sn , {(x1, y1), . . . , (xn, yn)} ∼ P n. We are also given

an unlabeled and typically large detection-training set (or calibration set), denoted as Sm ∼ (PX)m. The goal can be

formulated as follows,

1. Given an unlabeled test sample, Wk ∼ Qk, where Q may be a different distribution from PX , the task is to determine

whether Q 6= PX.

2. Achieve (1) while ensuring that the time and space complexity of each detection decision over a test window remains

within o(m) – avoiding continuously referencing Sm.

Contributions

1. Adistribution shift detector, CBD, which can easily be integrated to any classificationmodel, significantly outperforming

earlier methods.

2. Given a test window of k samples, Wk, determine whether or not it is deviated from the original distribution, with

O(k) time and space complexities (independent of the size of Sm) – dramatic improvement to previous baselines.

Selective prediction

Selective prediction techniques aim to create models that make reliable predictions but can abstain under high uncertainty.

We introduce key definitions and concepts for their use in detecting distribution shifts,

κf(x) - a confidence-rate function.
gθ(x|κ) , 1[κf(x) ≥ θ] - a selection function.

ĉ(θ, Sk) , 1
k

∑k
i=1 gθ(xi|κ) - the empirical coverage of Sk given θ.

c(θ, PX) , EPX
[gθ(x|κ)] - the coverage (or true coverage) of PX given θ.
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Selection with Guaranteed Coverage (SGC)
SGC relies on Lemma 4.1 (see paper), which gets as input

ĉ(θ, Sm), and returns b∗, such that,

PrSm
{c(θ, PX) < b∗(m, m · ĉ(θ, Sm), δ)} < δ,

i.e., returns a lower bound on the true coverage, c(θ, PX).

SGC gets as input:

A detection-training set, Sm ∼ (PX)m.

A desired coverage (lower bound), c∗.

Confidence parameter, δ.

And outputs:

The actual guaranteed coverage (true coverage

lower bound), b∗.

The corresponding threshold, θ, for constructing
the appropriate gθ.

Algorithm 1: Selection with guaranteed coverage (SGC)
Input: detection-training set: Sm, confidence-rate function: κf ,

confidence parameter δ, target coverage: c∗.

Sort Sm according to κf(xi), xi ∈ Sm (and now assume w.l.o.g.

that indices reflect this ordering).

zmin = 1, zmax = m
for i = 1 to k = dlog2 me do
z = d(zmin + zmax)/2e
θi = κf(xz)
Calculate ĉi(θi, Sm)
Solve for b∗

i (m, m · ĉi(θi, Sm), δ
k) {see Lemma 4.1 in the paper}

if b∗
i (m, m · ĉi(θi, Sm), δ

k) ≤ c∗ then
zmax = z
end

zmin = z
end

Output: bound: b∗
k(m, m · ĉk(θk, Sm), δ

k), threshold: θk.

Theorem. Assume Sm is sampled i.i.d. from PX , and consider an application of Algorithm 1. For k = dlog2 me, let
b∗

i (m, m · ĉi(θi, Sm), δ
k) and θi be the values obtained in the ith iteration of Algorithm 1. Then,

PrSm
{∃i : c(θi, PX) < b∗

i (m, m · ĉi(θi, Sm), δ
k)} < δ.

Coverage-Based Detection (CBD)

Our CBD technique employs SGC across multiple target coverages (Ctarget) to identify the corresponding lower bounds and

thresholds, {b∗
j, θj}

Ctarget

j=1 , for the true coverage of the underlying distribution.
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Magnitude︷ ︸︸ ︷(
b∗

j − ĉ(θj, Wk)
)

·
1[
︷ ︸︸ ︷
ĉ ≤ b∗]︷ ︸︸ ︷

δ(ĉ(θj, Wk)|b∗
j)

(a) No-shift case. (b) Shift case (ImageNet-O).

Complexity analysis

A theoretical complexity analysis is given→.

An empirical complexity analysis is given↓ – showing our

method’s significant run-time advantage, 5 OOM reduc-

tion over the best baseline, with m = 1, 000, 000 detection-
training samples.

Method Space Time

MMD O(m2 + k2 + mk) O(d(m2 + k2 + mk))
KS O(d(m + k)) O(d(m log m + k log k))
Single-instance O(k) O(k)

CBD (Ours) O(k) O(k)

5 OOM !

Experiments

We benchmark our method against a range of established benchmarks, including both population-based and single-

instance detection techniques; CBD excels in most combinations of architecture, window size, and evaluation metrics.

Notably, when applied over the ViT-T architecture, CBD achieves remarkable results, registering over 86% in all threshold-

independentmetrics (such asAUROC,AUPR-In, AUPR-Out), particularly across awindowof 10 samples. This performance

is significantly superior to its closest competitors, with CBD maintaining a substantial lead of approximately 20%.

Architecture Method

Window size

AUROC ↑ / AUPR-In ↑ / AUPR-Out ↑ / DetectionError ↓ / FPR@95TPR ↓
10 20 50 100 200 500 1000

ResNet50

KS
Softmax 61/67/62/34/67 73/74/74/31/64 87/90/85/13/27 89/89/89/15/29 94/95/92/7/14 99/99/99/2/4∗ 100/100/100/0.4/0.9

Embeddings 72/74/73/28∗/56∗ 68/73/74/24/48 81/84/79/18/37 75/76/79/22/44 76/79/79/20/40 84/87/84/13/26 86/88/84/13/26

MMD
Softmax 54/61/56/36/72 62/65/62/37/72 73/76/72/29/56 73/73/78/33/59 79/79/79/35/54 83/85/83/15/30 85/85/85/22/37

Embeddings 75/72/77/38/70 79/78/79/29/57 87/87/86/18/37 83/86/81/15/30 83/85/82/14/29 83/85/83/17/32 83/86/82/13/26

Single-instance
SR 56/65/55/34/68 72/73/72/32/63 71/75/72/28/56 77/78/79/25/50 84/85/83/19/40 87/88/87/14/28 88/88/89/15/30

Entropy 64/69/63/32/64 73/73/73/32/63 74/78/73/26/52 80/80/81/23/47 84/85/84/17/35 87/87/87/15/31 90/90/91/13/26
CBD (Ours) 78/70/82∗/42/84 88∗/91∗/87∗/15∗/30∗ 95∗/95∗/93∗/9∗/17∗ 93∗/93∗/92∗/10∗/20∗ 97∗/97∗/97∗/5/10 98/98/98/4/7 100/100/100/0.4/0.9

MobileNetV3-S

KS
Softmax 71/72/75/32∗/63∗ 84∗/84/83/21/43 89/91/88/13/27 92/93/91/10/20 95/97/94/5/11 96/96/97/6/11 100/100/100/1/2

Embeddings 63/67/63/37/75 65/66/67/37/75 77/78/76/27/54 72/73/76/27/53 84/83/86/22/43 86/87/86/15/30 79/81/81/18/36

MMD
Softmax 75/73/75/38/72 78/78/78/30/59 86/89/82/17/32 86/89/84/14/26 87/88/86/14/28 89/90/88/12/24 90/91/88/11/22

Embeddings 67/67/68/39/75 66/67/68/37/74 72/77/71/23/47 75/75/79/28/53 89/87/87/20/39 81/82/81/21/40 82/86/80/15/30

Single-instance
SR 58/62/60/37/74 65/70/66/30/60 86/87/86/19/39 86/88/84/15/30 93/93/93/11/22 96/97/95/5/10 98/98/97/3/7

Entropy 52/61/57/36/72 64/70/65/29/57 85/86/86/17/33 87/88/85/15/29 93/93/94/11/22 96/96/96/6/12 98/99/98/3/7
CBD (Ours) 80∗/73/82∗/40/80 80/85/76/20/40 94∗/95∗/93∗/8∗/15∗ 94/94/94∗/11/21 95/96/95/6/13 97/98/96/4/8 99/99/99/1/2

ViT-T

KS
Softmax 62/68/66/30/59 85/86/83/19/41 82/82/83/21/42 90/91/91/11/22 88/89/90/11/22 95/96/95/5/11 98/98/98/3/6

Embeddings 68/66/71/38/76 76/83/73/19/38 82/86/80/17/34 81/82/81/20/39 81/84/80/17/34 76/75/82/22/44 84/83/86/19/38

MMD
Softmax 58/59/64/44/82 69/70/73/38/69 77/80/77/22/44 75/80/76/20/40 80/86/78/15/29 89/91/90/12/23 93/94/92/7/15

Embeddings 61/59/68/46/85 74/77/74/26/53 82/84/80/20/40 80/82/83/21/39 82/81/82/20/40 78/76/81/22/44 77/78/79/24/45

Single-instance
SR 67/70/70/31/61 78/76/77/29/58 76/79/76/23/45 89/90/86/14/29 91/93/91/9/20 97/97/97/5/11 99/99/98/2/5

Entropy 69/74/69/27/53 79/78/78/27/55 75/78/74/22/44 89/89/90/15/31 86/87/87/14/28 93/94/93/7/14 97/97/97/4/9
CBD (Ours) 89∗/86∗/90∗/28/56 91∗/87/92∗/24/47 94∗/93∗/95∗/13∗/25∗ 95∗/96∗/96∗/8∗/15∗ 97∗/96∗/97∗/8/16 98∗/98/98/4/9 99/99/99/3/6
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