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This paper presents Learning Representations by position >ame Video alignment on the Pouring dataset with LRProp fea-
PROPagation (LRProp), a novel weakly-supervised method for (1) o ex ( B i)2/2 5 tures and the DTW algorithm shows successful capture of
frame-based feature learning in video analysis, using a trans- PUl AR d key events across videos.

former encoder and a variant of the DTW algorithm for tem-
poral alignment of video pairs, Improving performance in var-
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Weak-supervision. Weakly supervised learning involves - eanming oo g
cases in which the videos of interest consist of the same ac- Lprop - Prior Distribution for Frames in Different Videos. .
fion category sequence. In these cases, we are given an or- Lifting off E P>
dered list of actions during training, but the exact temporal

Incorporating the previously
established p(i|})) and the Aligned frames in the Pouring dataset using DTW algorithm

boundaries or paste of each action are not provided.

D.TW' Dynamic Time Warping (DTW) is a well-known tech- DTW algorithm, our method- demonstrate LRProp’s superior accuracy in capturing actions,
nigue for measuring the distance between two seqguences . . .

. ology constructs a prior dis- compared to SCL [1], as shown by blue and red circles.
which may vary in speed,

tribution for a second video,
informed by the first. This
s represented as pprop(if), as
Illustrated at the bottom of
the Figure. Specifically, our
process involves the follow-
INg steps:
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SoftDTW. SoftDTW [2] is a differentiable DTW variant,

which employs a soft, differentiable minimum function regu- = Alignment Path Extraction: We derive the alignment path
lated by a parameter ~:
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Results on the Pouring dataset.

-valuation metrics for video frame representations include
Phase Classification Accuracy, Phase Progression, Average

) petween the two videos using the DTW algorithm. This Precision@K, Kendall's Tau, and DTW Accuracy. Our method
min{ai, as, ..., an} - min'{ay, as, ..., a,} = —7 - log (Z exp (—al>) | O?th defines the similarity between frames across the surpasses others, achieving 93.88% Phase Classification Ac-
=1 ! VIdeos. curacy with just 25% of labels, and shows significant im-
= Pair-Wise Position Propogation: Based on the DTW align- provements in semantic frame identification as depicted in
Contributions ment path, we propagate the frame bins from the first the Average Precision@K column. We also see gains In
video to the second. This step is crucial for mapping simi- Kendall's tau and Phase progression metrics compared to
1. We present a general weakly-supervised framework for larities between corresponding frames. SCL [1], which has already shown a phenomenal improve-
learning frame-wise representations with a focus on = Prior Distribution Definition: The result of this process is ment of more than 10% over all previous methods. Finally, a
video alignment. formalized as pprop(ilf). This function acts as a prior dis- notable 6% increase in DTW Accuracy, indicating that using
2. The proposed pair-wise position propagation i1s shown to tribution, quantifying the similarity between frame i in the our frame-wise features will result iIn @ more precise video
result in features that offer better temporal awareness second video and frame [ in the first video - the similarity alignment.
Compared to prior WOork. 1S visualized by the he]ght of the bin. Method 7 Progress AP@K Classification@ DIW A
3. Our approach achieves superior performance to the K=o K210 k=1>] 10 2> o0 100
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