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Introduction

This paper presents Learning Representations by position

PROPagation (LRProp), a novelweakly-supervisedmethod for

frame-based feature learning in video analysis, using a trans-

former encoder and a variant of the DTW algorithm for tem-

poral alignment of video pairs, improving performance in var-

ious downstream applications.

Preliminaries

Weak-supervision. Weakly supervised learning involves

cases in which the videos of interest consist of the same ac-

tion category sequence. In these cases, we are given an or-

dered list of actions during training, but the exact temporal

boundaries or paste of each action are not provided.

DTW. Dynamic Time Warping (DTW) is a well-known tech-

nique for measuring the distance between two sequences

which may vary in speed,

DTW(i, j) = d(i, j) + min{DTW(i,j-1), DTW(i-1,j), DTW(i-1,j-1)}

SoftDTW. SoftDTW [2] is a differentiable DTW variant,
which employs a soft, differentiable minimum function regu-
lated by a parameter γ:

min{a1, a2, . . . , an} γ−→ minγ{a1, a2, . . . , an} = −γ · log

(
n∑

i=1
exp
(

−ai

γ

))
.

Contributions

1. We present a general weakly-supervised framework for

learning frame-wise representations with a focus on

video alignment.

2. The proposed pair-wise position propagation is shown to

result in features that offer better temporal awareness

compared to prior work.

3. Our approach achieves superior performance to the

state-of-the-art on various temporal understanding

tasks on the Pouring and PennAction datasets, setting

a new performance benchmark for downstream tasks.

LRProp

General idea. We consider a pair of weakly supervised

videos. We pose the question: what distribution should their

embeddings follow? We enforce this distribution over the

embedding space using D-KL divergence, via three loss func-

tions, LSame, LProp, LSdtw.

Encoder
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LSame - Prior Distribution for Frames in the Same Video.

p( i| j) ∝ exp
{(

j − i
)2

/2σ2
}

qθ( i| j) ∝ exp
{
sim
(
z j , z i

)
/τ

}
L j
Same = DKL

[
qθ( i| j) ‖ p( i| j)

]
LSame =

n∑
j=1

L j
Same

LProp - Prior Distribution for Frames in Different Videos.

p()*+(i|j)

Incorporating the previously

established p( i| j) and the

DTW algorithm, our method-

ology constructs a prior dis-

tribution for a second video,

informed by the first. This

is represented as pProp( i| j), as
illustrated at the bottom of

the Figure. Specifically, our

process involves the follow-

ing steps:

Alignment Path Extraction: We derive the alignment path

between the two videos using the DTW algorithm. This

path defines the similarity between frames across the

videos.

Pair-Wise Position Propogation: Based on the DTWalign-

ment path, we propagate the frame bins from the first

video to the second. This step is crucial for mapping simi-

larities between corresponding frames.

Prior Distribution Definition: The result of this process is

formalized as pProp( i| j). This function acts as a prior dis-

tribution, quantifying the similarity between frame i in the

second video and frame j in the first video – the similarity

is visualized by the height of the bin.

Finally,

L j
Prop = DKL

[
qθ( i| j) ‖ pProp( i| j)

]
LProp =

n∑
j=1

L j
Prop

LSdtw - Can we Trust the alignment path?

Lets learn it! The final component of our loss function is

the SoftDtw loss component, which implicitly learns a bet-

ter alignment path. Given that the length of the two videos

is n, m, it can be formulated as follows,

LSdtw = DTWγ(n, m) = d(n, m)+
minγ{DTWγ(n, m − 1),DTWγ(n − 1, m),DTWγ(n − 1, m − 1)}

Experiments

Video alignment on the Pouring dataset with LRProp fea-

tures and the DTW algorithm shows successful capture of

key events across videos.

Aligned frames in the Pouring dataset using DTW algorithm

demonstrate LRProp’s superior accuracy in capturing actions,

compared to SCL [1], as shown by blue and red circles.

Results on the Pouring dataset.

Evaluation metrics for video frame representations include

Phase Classification Accuracy, Phase Progression, Average

Precision@K, Kendall’s Tau, and DTWAccuracy. Our method

surpasses others, achieving 93.88% Phase Classification Ac-

curacy with just 25% of labels, and shows significant im-

provements in semantic frame identification as depicted in

the Average Precision@K column. We also see gains in

Kendall’s tau and Phase progression metrics compared to

SCL [1], which has already shown a phenomenal improve-

ment of more than 10% over all previous methods. Finally, a

notable 6% increase in DTW Accuracy, indicating that using

our frame-wise features will result in a more precise video

alignment.

Method τ Progress AP@K Classification@ DTWA

K=5 K=10 K=15 10 25 50 100

SCL 99.2 93.5 90.04† 89.69† 88.92† 85.78† 87.14† 89.45† 93.73 84.68†

SAL 79.61 77.28 84.05 83.77 83.79 87.63 - 87.58 88.81 -

TCN 85.12 80.44 83.56 83.31 83.01 89.67 - 87.32 89.53 -

TCC 86.36 83.73 87.16 86.68 86.54 90.65 - 91.11 91.53 -

LAV 85.61 80.54 89.13 89.13 89.22 91.61 - 92.82 92.84 -

VAVA 87.55 83.61 - - - 91.65 - 91.79 92.84 -

LRProp 99.46 94.09 92.41 90.33 90.86 92.7 93.88 94.44 94.36 90.22
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