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Introduction

We introduce a novel approach that combines the theoretical foundations of

Subgraph-GNNs with the empirical strengths of Graph-Transformers. By estab-

lishing a connection between Subgraph-GNNs and the Graph Cartesian Product,

we enable the efficient integration of these methodologies.

Goals

1. Efficiently integrate positional encodings tailored for Subgraph-GNNs.

2. Incorporate attention mechanisms into the structure of Subgraph-GNNs.

Contributions

1. Subgraphormer, an architecture that combines the strengths of both

transformer-based and Subgraph-based architectures.

2. An observation connecting Subgraph-GNNs to product graphs.

3. A positional encoding scheme tailored to subgraph methods.

4. An empirical study demonstrating significant improvements of Sub-

graphormer compared to existing baselines.

Preliminaries

Graph Transformers. Graph Transformers typically employ Graph Positional En-

codings, such as Laplacian eigenvectors, alongside the attention mechanism ap-

plied to the new node feature matrix.
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vSubgraphGNNs. Subgraph GNNs represent a graph, G as a mul-

tiset or a bag of subgraphs. The bag of subgraphs is generated

through the application of a predefined selection policy to the

original graph. This bag is processed via an equivariant architec-

ture.

Subgraphormer
Subgraph-Based PE — Graph Cartesian product
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G1 = (V1, E1) A1

G2 = (V2, E2) A2

G1 □ G2

VG1□G2
≜ V1 × V2

(x, y) ∼G1□G2
(x′ , y′ ) ⟺

x = x′ y ∼G2
y′ 

y = y′ x ∼G1
x′ 

G1 = (V1, E1)

G2 = (V2, E2)

G1 □ G2

A2 ⊗ I I ⊗ A1!G1□G2
= +

Graph Cartesian Product. The

following is a example of the

graph Cartesian product be-

tween two graphs, G1, G2.

Subgraphormer

The objectives of Subgraphormer can be summarized as follows,

Integrate attention-based aggregations to Subgraph GNNs.

Integrate Subgraph-based Positional Encodings.

We build upon the updates used in the maximally expressive Subgraph GNN [1]:
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𝒜G = I ⊗ A 𝒜GT = A ⊗ I 𝒜Point

Attention mechanisms can be integrated using RGCN [2], modified to employ

attention-based updates.

Subgraph-based PE. The challenges in constructing Subgraph-based PE are,

1. Adjacency. What adjacency should be used?

2. Efficiency. The adjacency matrices for Subgraph GNNs are in Rn2×n2
, making

the eigendecomposition of their Laplacian matrix computationally expensive.

A natural solution to (1) is to use the adjacencies AG and AGT , excluding APoint

since it is asymmetrical and its connectivity is unrelated to the original graph. This

brings us to challenge (2).

We present a proposition drawing an analogy between the primary connectivity

of the maximally expressive Subgraph GNN and the Cartesian product of graphs.

Proposition (Subgraph GNNs and Cartesian Products). The internal and

external subgraph connectivities, AG and AGS, together form the connectivity of

the Cartesian product graph AG�G. Specifically, AG�G = AGS + AG, where

AGS = A ⊗ I and AG = I ⊗ A.

The following proposition enables efficient construction of Subgraph-based PE

via the eigendecomposition of the Laplacian matrix for AG�G:
Proposition (Product Graph Eigendecomposition). For a graph G = (A, X), the
eigenvectors and eigenvalues of the Laplacian matrix LG�G are

{(vi ⊗ vj, λi + λj)}n2

i,j=1, where {(vi, λi)}n
i=1 are the eigenvectors and eigenvalues

of the Laplacian matrix of G.

Subgraphormer handles n2-node graphs, but its PE only requires the eigendecom-

position of the original n-node graph, maintaining a time complexity of O(k · n2),
similar to the original graph’s PE calculation.

Experiments

The top three results are reported as First, Second, and Third.

Model ↓ / Dataset → Param.
ZINC-12k ZINC-Full

(MAE ↓) (MAE ↓)

GIN 500k 0.163 ±0.004 -

GPS 424k 0.070 ±0.004 -

Graphormer-GD 503k 0.081 ±0.009 0.025 ±0.004

DSS-GNN [5] 100k 0.102 ±0.003 0.029 ±0.003
GNN-SSWL+ [1] 387k 0.070 ±0.005 0.022 ±0.001

Subgraphormer 293k 0.067 ±0.007 0.020 ±0.002
Subgraphormer + PE 293k 0.063 ±0.001 0.023 ±0.001

Model ↓ / Dataset → Peptides-func Peptides-struct

(AP ↑) (MAE ↓)

GCN 0.5930 ±0.0023 0.3496 ±0.0013
GatedGCN+RWSE 0.6069 ±0.0035 0.3357 ±0.0006

Transf.+LapPE 0.6326 ±0.0126 0.2529 ±0.0016
SAN+RWSE 0.6439 ±0.0075 0.2545 ±0.0012
GPS 0.6535 ±0.0041 0.2500 ±0.0005

GNN-SSWL+ 30% 0.5847 ±0.0050 0.2570 ±0.0006

Subgraphormer 30% 0.6415 ±0.0052 0.2494 ±0.0020
Subgraphormer + PE 30% 0.6373 ±0.0110 0.2475 ±0.0007

ZINC.On ZINC-12k and ZINC-Full (left table), Subgraphormer outperforms both

Subgraph GNNs and Graph Transformers with fewer parameters. The atten-

tion mechanism and product graph PE boost its performance, making it the top

method on ZINC-12k.

Peptides. On Peptides-func and Peptides-struct (right table), Subgraphormer
shows excellent scalability and captures long-range dependencies. With a 30%

sampling ratio, it achieves top performance on Peptides-struct and comparable

results on Peptides-func.
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