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ishing a connection between Subgraph-GNNs and the Graph Cartesian Product, original graph. This bag is processed via an equivariant architec- 199999 The following proposition enables efficient construction of Subgraph-based PE
we enable the efficient integration of these methodologies. fure. G,0G, S: : : : : via the eigendecomposition of the Laplacian matrix for Aqoe:
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1. Efficiently integrate positional encodings tailored for Subgraph-GNNs. t ; ohe (- O (4 of the Laplacian matrix of G.
2. Incorporate attention mechanisms into the structure of Subgraph-GNNs. WEETT LWO glapls, &1, Lo e . .
Subgraphormer handles n*-node graphs, but its PE only requires the eigendecom-
Subgraphormer position of the original n-node graph, maintaining a time complexity of O(k - n?),
Contributions similar to the original graph’s PE calculation.
| | The objectives of Subgraphormer can be summarized as follows, Exberiments
1. Subgiaphormer, an architecture that comobmes the strengths of both . Integrate attention-based aggregations to Subgraph GNNis. P
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Graph Iransformers. G.raph.Transfo”mers typmaHy employ Graah POsIt o.na\ -1 de=1®4 g =A®1 “point ZINC. On ZINC-12k and ZINC-Full (left table), Subgraphormer outperforms both
codings, such as Laplacian eigenvectors, alongside the attention mechanism ap- S CNN 4 Graph Transf ot ) ; The att
led to the new node feature matrix Attention mechanisms can be integrated using RGCN |[2], modified to emplo S— ] I—— WL TEWET PaTaTlIELSTS. TG LT
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{:'2:} : oQ gagi%(Q’ KA) Subg.raph based PE. The challenges in constructing subgrapn-based PL are, Peptides. On Peptides-func and Peptides-struct (right table), Subgraphormer
! X/j@// ° s 1. Adjacency. What adjacency should be used? shows excellent scalability and captures long-range dependencies. With a 30%
: 6= (X,A), ' 0 N 2. Efficiency. The adjacency matrices for Subgraph GNNs are in R™ %" making sampling ratio, It achieves top performance on Peptides-struct and comparable
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