

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Introduction

We introduce a novel approach that combines the theoretical foundations of Subgraph-GNNs with the empirical strengths of Graph-Transformers. By establishing a connection between Subgraph-GNNs and the Graph Cartesian Product, we enable the efficient integration of these methodologies.

Goals

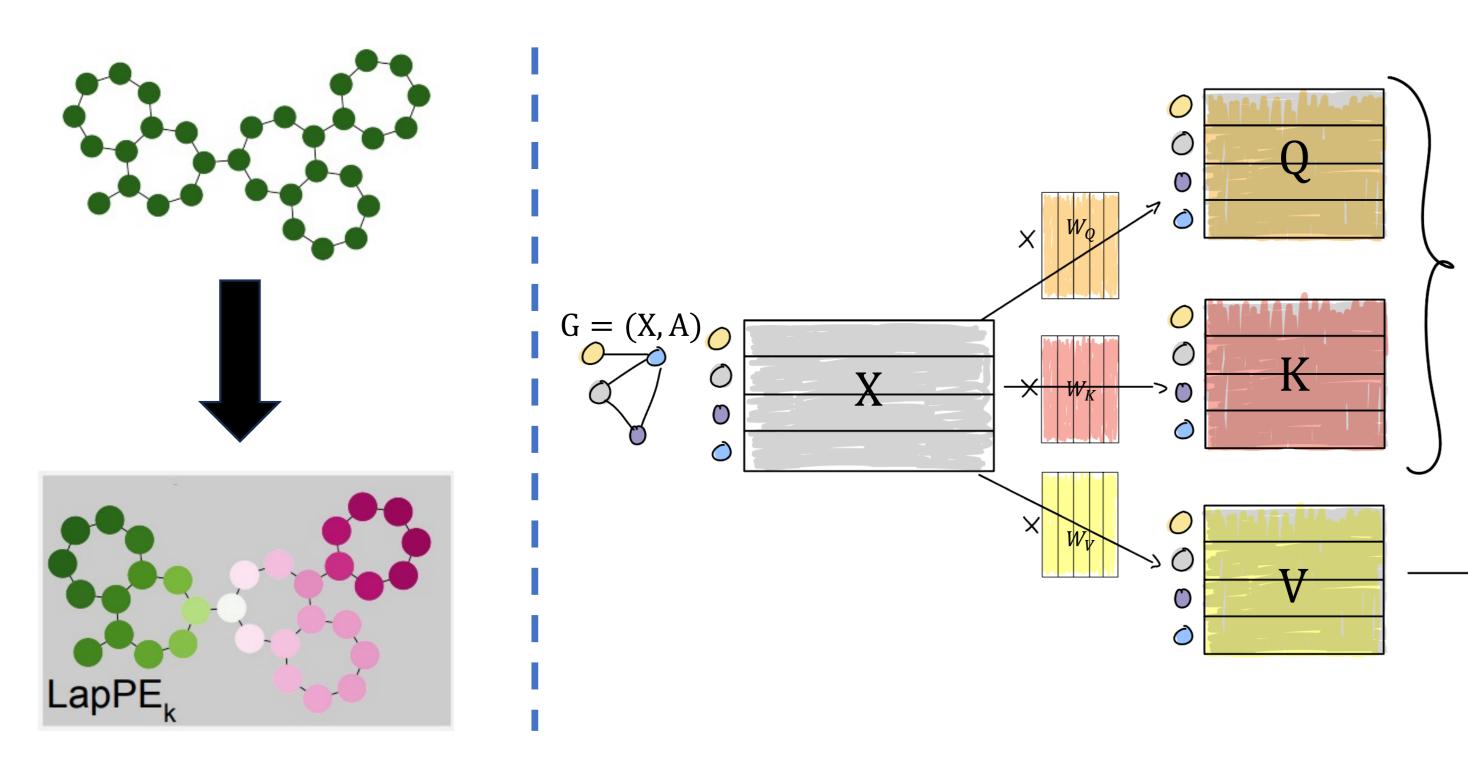
- Efficiently integrate positional encodings tailored for Subgraph-GNNs.
- 2. Incorporate attention mechanisms into the structure of Subgraph-GNNs.

Contributions

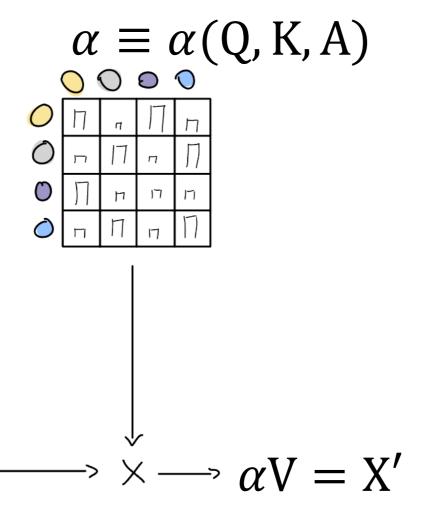
- . Subgraphormer, an architecture that combines the strengths of both transformer-based and Subgraph-based architectures.
- 2. An observation connecting Subgraph-GNNs to product graphs.
- 3. A positional encoding scheme tailored to subgraph methods.
- 4. An empirical study demonstrating significant improvements of Subgraphormer compared to existing baselines.

Preliminaries

Graph Transformers. Graph Transformers typically employ Graph Positional Encodings, such as Laplacian eigenvectors, alongside the attention mechanism applied to the new node feature matrix.

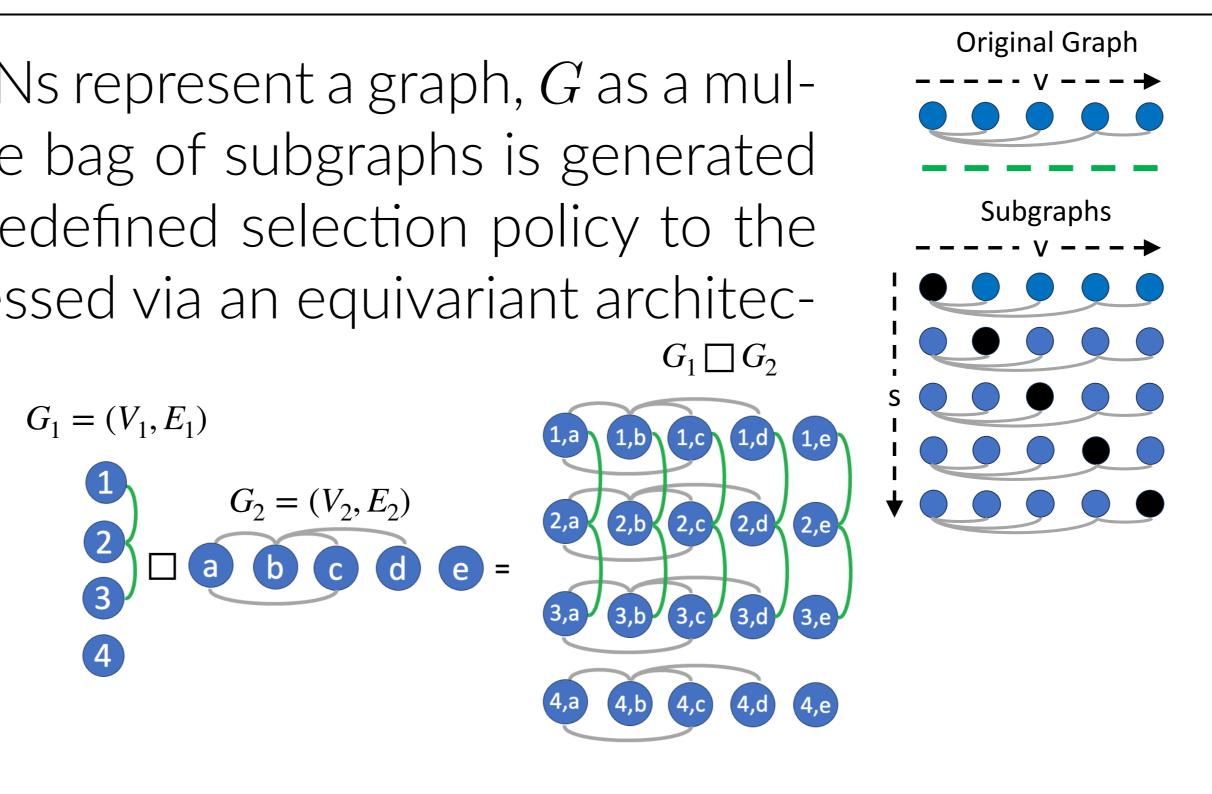


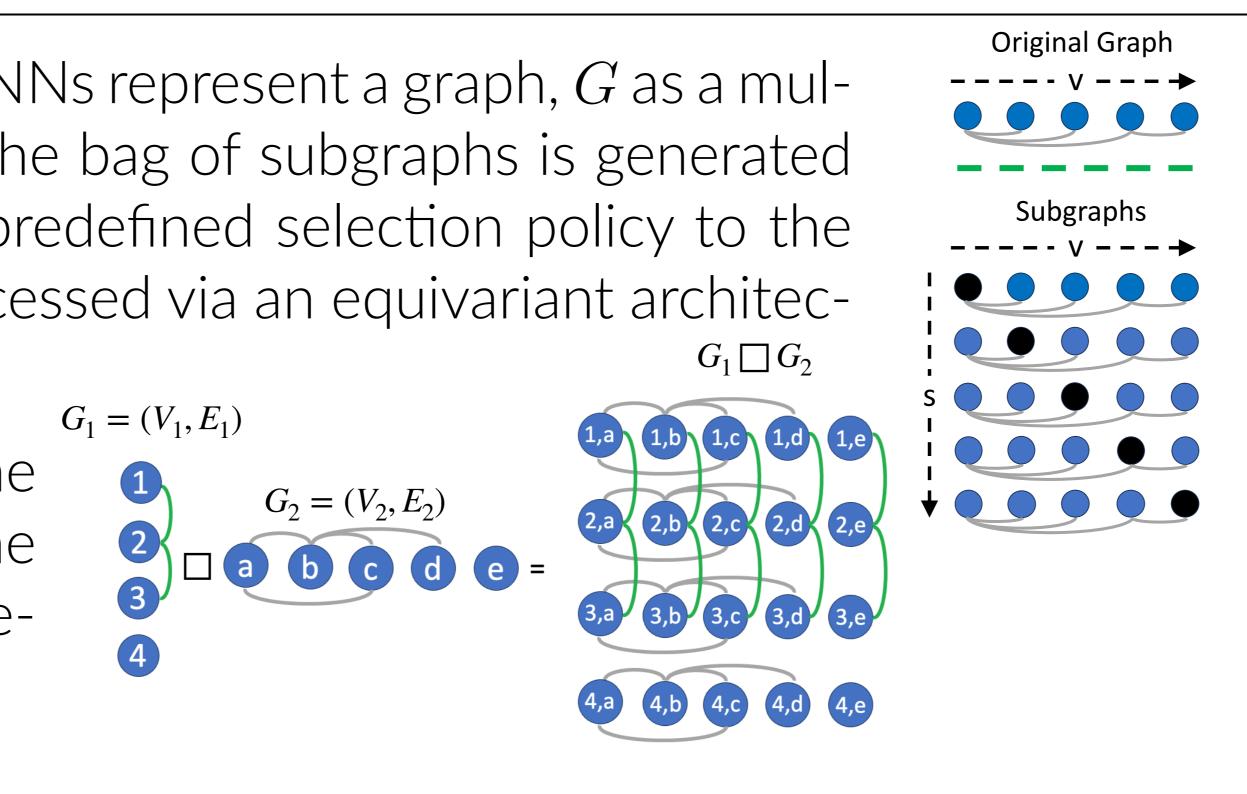
Guy Bar-Shalom¹, Beatrice Bevilacqua², Haggai Maron^{1,3} Technion¹, Purdue University², Nvidia³



Subgraph GNNs. Subgraph GNNs represent a graph, G as a multiset or a bag of subgraphs. The bag of subgraphs is generated through the application of a predefined selection policy to the original graph. This bag is processed via an equivariant architecture.

Graph Cartesian Product. The following is a example of the graph Cartesian product between two graphs, G_1, G_2 .

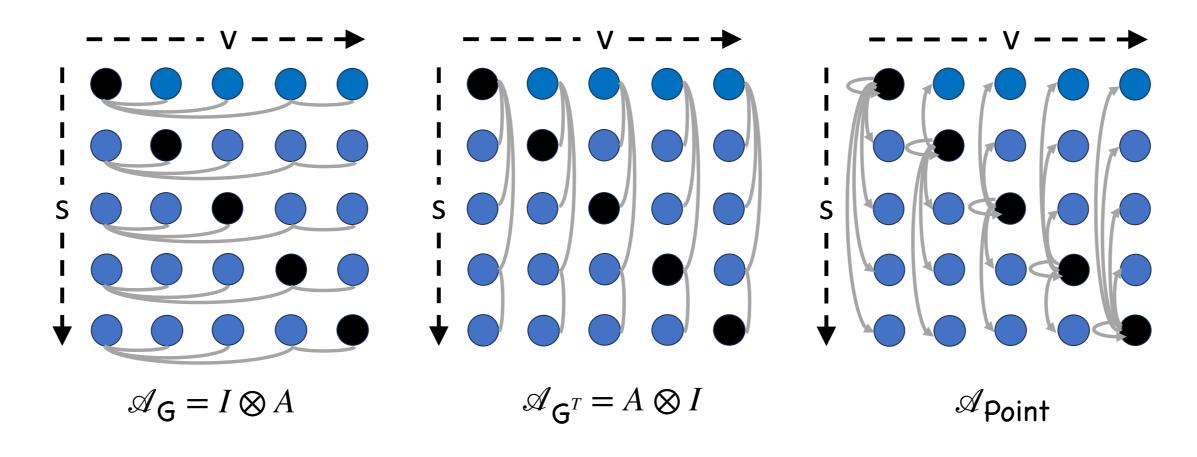




Subgraphormer

The objectives of Subgraphormer can be summarized as follows, Integrate attention-based aggregations to Subgraph GNNs. Integrate Subgraph-based Positional Encodings.

We build upon the updates used in the maximally expressive Subgraph GNN [1]:



Attention mechanisms can be integrated using RGCN [2], modified to employ attention-based updates.

Subgraph-based PE. The challenges in constructing Subgraph-based PE are, . Adjacency. What adjacency should be used?

A natural solution to (1) is to use the adjacencies \mathcal{A}_G and \mathcal{A}_{G^T} , excluding \mathcal{A}_{Point} since it is asymmetrical and its connectivity is unrelated to the original graph. This brings us to challenge (2).

We present a proposition drawing an analogy between the primary connectivity of the maximally expressive Subgraph GNN and the Cartesian product of graphs.

2. Efficiency. The adjacency matrices for Subgraph GNNs are in $\mathbb{R}^{n^2 \times n^2}$, making the eigendecomposition of their Laplacian matrix computationally expensive.

 $\mathcal{A}_{G^S} = A \otimes I$ and $\mathcal{A}_G = I \otimes A$.

of the Laplacian matrix of G.

Subgraphormer handles n^2 -node graphs, but its PE only requires the eigendecomposition of the original n-node graph, maintaining a time complexity of $O(k \cdot n^2)$, similar to the original graph's PE calculation.

Model \downarrow / Dataset \rightarrow	Param.	ZINC-12k (MAE↓)	ZINC-Full (MAE ↓)
GIN	500k	0.163 ± 0.004	_
GPS Graphormer-GD	$\begin{array}{c} 424k\\ 503k \end{array}$	0.070 ±0.004 0.081 ±0.009	
DSS-GNN [5] GNN-SSWL+ [1]	$\frac{100k}{387k}$	0.102 ± 0.003 0.070 ± 0.005	
Subgraphormer Subgraphormer + PE	$\begin{array}{c} 293k\\ 293k \end{array}$	$\begin{vmatrix} 0.067 \pm 0.007 \\ 0.063 \pm 0.001 \end{vmatrix}$	

ZINC. On ZINC-12k and ZINC-Full (left table), **Subgraphormer** outperforms both Subgraph GNNs and Graph Transformers with fewer parameters. The attention mechanism and product graph PE boost its performance, making it the top method on ZINC-12k.

Peptides. On Peptides-func and Peptides-struct (right table), Subgraphormer shows excellent scalability and captures long-range dependencies. With a 30% sampling ratio, it achieves top performance on Peptides-struct and comparable results on Peptides-func.

Bohang Zhang, Guhac
A Complete Expressiver
ICML 2023.
Michael Schlichtkrull,

ESWC 2018.

Proposition (Subgraph GNNs and Cartesian Products). The internal and external subgraph connectivities, \mathcal{A}_G and \mathcal{A}_{G^S} , together form the connectivity of the Cartesian product graph $\mathcal{A}_{G\square G}$. Specifically, $\mathcal{A}_{G\square G} = \mathcal{A}_{G^S} + \mathcal{A}_{G}$, where

The following proposition enables efficient construction of Subgraph-based PE via the eigendecomposition of the Laplacian matrix for $\mathcal{A}_{G\square G}$:

Proposition (Product Graph Eigendecomposition). For a graph G = (A, X), the eigenvectors and eigenvalues of the Laplacian matrix $L_{G\square G}$ are

 $\{(v_i \otimes v_j, \lambda_i + \lambda_j)\}_{i,j=1}^{n^2}$, where $\{(v_i, \lambda_i)\}_{i=1}^n$ are the eigenvectors and eigenvalues

Experiments

The top three results are reported as **First**, **Second**, and **Third**.

Model \downarrow / Dataset \rightarrow	Peptides-func Peptides-struct (AP↑) (MAE↓)
GCN GatedGCN+RWSE	$ \begin{vmatrix} 0.5930 \pm 0.0023 \\ 0.6069 \pm 0.0035 \end{vmatrix} \begin{array}{c} 0.3496 \pm 0.0013 \\ 0.3357 \pm 0.0006 \end{vmatrix} $
Transf.+LapPE SAN+RWSE GPS	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
GNN-SSWL+ 30%	0.5847 ± 0.0050 0.2570 ± 0.0006
Subgraphormer30%Subgraphormer+ PE 30%	$ \begin{vmatrix} 0.6415 \pm 0.0052 \\ 0.6373 \pm 0.0110 \end{vmatrix} \begin{array}{l} 0.2494 \pm 0.0020 \\ 0.2475 \pm 0.0007 \end{vmatrix} $

References

o Feng, Yiheng Du, Di He, Liwei Wang. eness Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests.

Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. Modeling Relational Data with Graph Convolutional Networks.