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Introduction

This paper merges two enhanced Graph Neural Network (GNN) architectures:

Subgraph GNNs and Graph Transformers. Subgraph GNNs apply GNNs to bags of

subgraphs generated from the original graph, which is provablymore powerful than

traditional message-passing, while Graph Transformers leverage attention mecha-

nisms, on new objects, which are derived from the original graph and preserves

important quantities. We propose a novel architecture, called Subgraphormer that

combines these two approaches, offering improved performance for graph data –

with promising results on the ZINC12k dataset.

Notation and preliminaries

Subgraph GNNs. Subgraph GNNs represent a graph, G as a multiset or a bag

of subgraphs, denoted as BG. The bag of subgraphs is generated through the

application of a predefined selection policy to the original graph. The following is

a specific example wherein the predefined policy involves marking the root node

of each subgraph.
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We denote be xs
v the feature of node v, in subgraph, s.

Graph Transformers. Graph Transformers are designed to leverage the significant

success of the Transformer model, which was originally developed for natural lan-

guage processing tasks. The core concept is to implement attention-based opera-

tions among nodes, enhancing their capability in graph-based applications.
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Contributions

1. A graph Transformer model, which builds on insights from Subgraph GNNs,

dubbed Subgraphormer.
2. A positional and structural encoding scheme tailored to subgraphs, enabling

each node to integrate information from multiple subgraphs.

The Subgraphormer Model

Overview.
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Figure 1. Our

architecture,

Subgraphormer, is
composed of a

structural and

positional encoding

layer, a stacking of

Subgraph

Attention-Based

Blocks (SABBs),

and a pooling layer.

Subgraph PE & SE block.

1. Node-Marking. We add a special mark to each node as follows,

xs;NM
v ← xs

v + zdist(s,v),

where z ∈ Rd is a learnable embedding indexed by the value of the shortest

path from s to v in the original Graph.

2. Positional Encoding. Based on the original graph’s Laplacian

eigendecomposition: L = D − A = UTΛU , define pi , [Ui1, . . . , Uik], we have,
xs;PE

v ←WPE
1 LeakyReLU

(
WPE

2 [ps ⊕ pv]
)
.

3. Structural Encoding. Based on the original graph’s RandomWalk operator,

RW , D−1A, define, ri , [RWii,RW
2
ii, . . . ,RWk′

ii ], we have,
xs;SE

v ←WSE
1 LeakyReLU

(
WSE

2 [rs ⊕ rv]
)

.

The three vectors xs;NM
v , xs;PE

v , xs;SE
v are then concatenated and passed through an

MLP with one hidden layer, along with a residual connection with xs;NM
v .

SubgraphAttention-Based Block. We utilize the GATV2 [2] type layer to calculate

the attention matrix α. Our approach particularly focuses on biasing this attention

towards the structures of each of the subgraphs, as illustrated in Figure 1. Specif-

ically, the related adjacencies are defined as follows:

Local Subg.-to-Subg. Attention: ∆Ls
(

(s, v), (s′, v′), G
)

=

{
δss′ if v and v′ are neighbors in G,

0 otherwise

Local Node-to-Node Attention: ∆Lv
(

(s, v), (s′, v′), G
)

=

{
δvv′ if s and s′ are neighbors in G,

0 otherwise

Global Same Subgraph Attention: ∆Gs
(

(s, v), (s′, v′), G
)

= δss′

Global Same Node Attention: ∆Gv
(

(s, v), (s′, v′), G
)

= δvv′

Global Attention: ∆G
(

(s, v), (s′, v′), G
)

= 1

Pooling. The final pooling layer, ρ is implemented as follows, ρ(BG) =
1
S

∑S
s=1 MLP

(∑N
v=1 xs

v

)
.

Stochastic sampling

To improve our model’s scalability, we implement stochastic sampling by randomly

selecting subgraphs ( specifically we use {0.05%, 0.2%, 0.5%}) from the bag BG.

Our attention mechanism is adapted to disregard unsampled subgraphs, nullify-

ing edges from (or to) nodes in unselected subgraphs.
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Experiments

In Table 1 we benchmark Subgraphormer against Transformer-based approaches,

and Subgraph-based approaches, as well as other baselines. In Table 2 we demon-

strate the performance of our stochastic sampling approach.

(1) Table 1 clearly demonstrates that all variants of Subgraphormer improve over

all baselines.

(2) Table 2 shows that Subgraphormer + SE and Subgraphormer + SE + PE variants

consistently outperform ESAN [1] across all sampling percentages.

Model ZINC (Test MAE ↓)

GSN 0.101± 0.010
CIN (small) 0.094± 0.004
GIN 0.252± 0.017

SAN 0.139± 0.006
URPE 0.086± 0.007
GPS 0.070± 0.004
Graphormer 0.122± 0.006
Graphormer-GD 0.081± 0.009
K-Subgraph SAT 0.094± 0.008

NGNN 0.111± 0.003
SUN 0.083± 0.003
ESAN 0.102± 0.003
OSAN 0.154± 0.008
GNN-AK 0.105± 0.010
GNN-AK+ 0.091± 0.002
GNN-SSWL 0.082± 0.003
GNN-SSWL+ 0.070± 0.005

Subgraphormer 0.064± 0.001
Subgraphormer + SE 0.066± 0.003
Subgraphormer + PE 0.062± 0.002
Subgraphormer + SE + PE 0.067± 0.002

Table 1

Model ZINC (Test MAE ↓)

ESAN (100%) 0.102± 0.003
ESAN (50%) 0.155± 0.007
ESAN (20%) 0.166± 0.005
ESAN (5%) 0.179± 0.001

Subgraphormer (100%) 0.064± 0.001
Subgraphormer (50%) 0.079± 0.050
Subgraphormer (20%) 0.129± 0.010
Subgraphormer (5%) 0.217± 0.008

Subgraphormer + SE (100%) 0.065± 0.002
Subgraphormer + SE (50%) 0.081± 0.005
Subgraphormer + SE (20%) 0.121± 0.014
Subgraphormer + SE (5%) 0.143± 0.001

Subgraphormer + PE (100%) 0.062± 0.002
Subgraphormer + PE (50%) 0.082± 0.005
Subgraphormer + PE (20%) 0.130± 0.003
Subgraphormer + PE (5%) 0.227± 0.012

Subgraphormer + SE + PE (100%) 0.067± 0.002
Subgraphormer + SE + PE (50%) 0.081± 0.006
Subgraphormer + SE + PE (20%) 0.114± 0.005
Subgraphormer + SE + PE (5%) 0.164± 0.005

Table 2
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