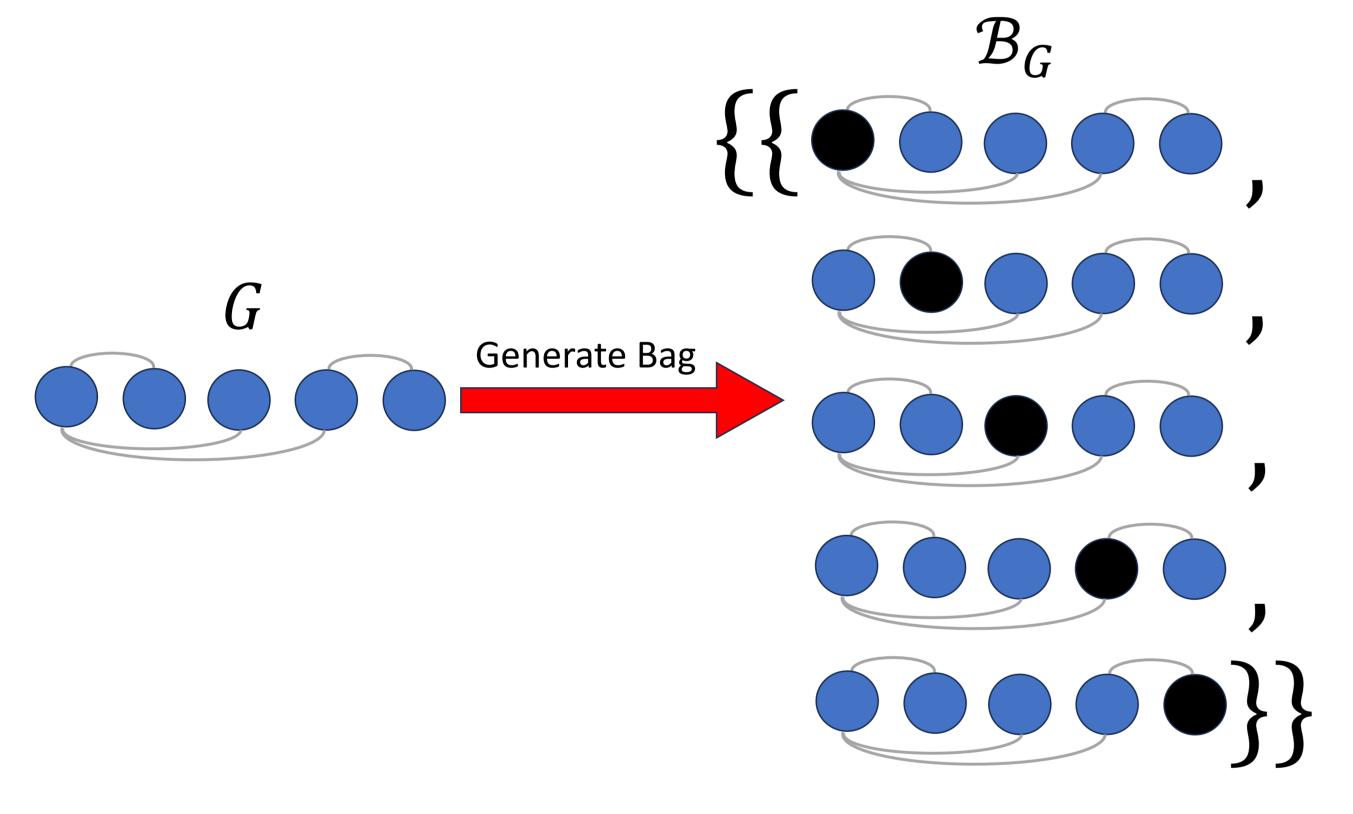
Subgraphormer: Subgraph GNNs meet Graph Transformers

Introduction

This paper merges two enhanced Graph Neural Network (GNN) architectures: Subgraph GNNs and Graph Transformers. Subgraph GNNs apply GNNs to bags of subgraphs generated from the original graph, which is provably more powerful than traditional message-passing, while Graph Transformers leverage attention mechanisms, on new objects, which are derived from the original graph and preserves important quantities. We propose a novel architecture, called **Subgraphormer** that combines these two approaches, offering improved performance for graph data – with promising results on the ZINC12k dataset.

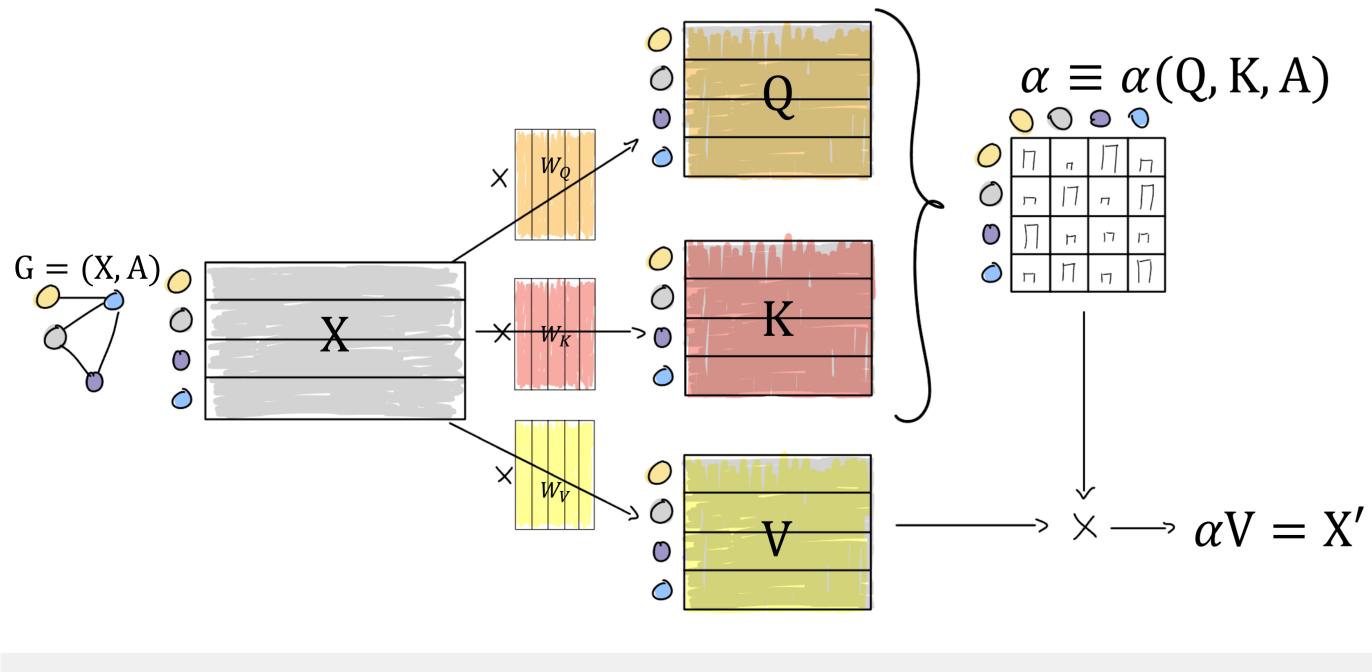
Notation and preliminaries

Subgraph GNNs. Subgraph GNNs represent a graph, G as a multiset or a bag of subgraphs, denoted as \mathcal{B}_{G} . The bag of subgraphs is generated through the application of a predefined selection policy to the original graph. The following is a specific example wherein the predefined policy involves marking the root node of each subgraph.



We denote be x_v^s the feature of node v, in subgraph, s.

Graph Transformers. Graph Transformers are designed to leverage the significant success of the Transformer model, which was originally developed for natural language processing tasks. The core concept is to implement attention-based operations among nodes, enhancing their capability in graph-based applications.



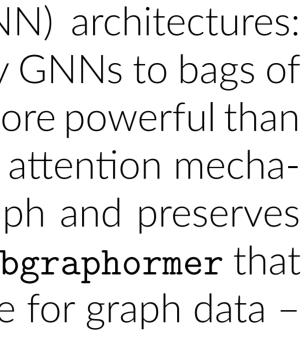
Contributions

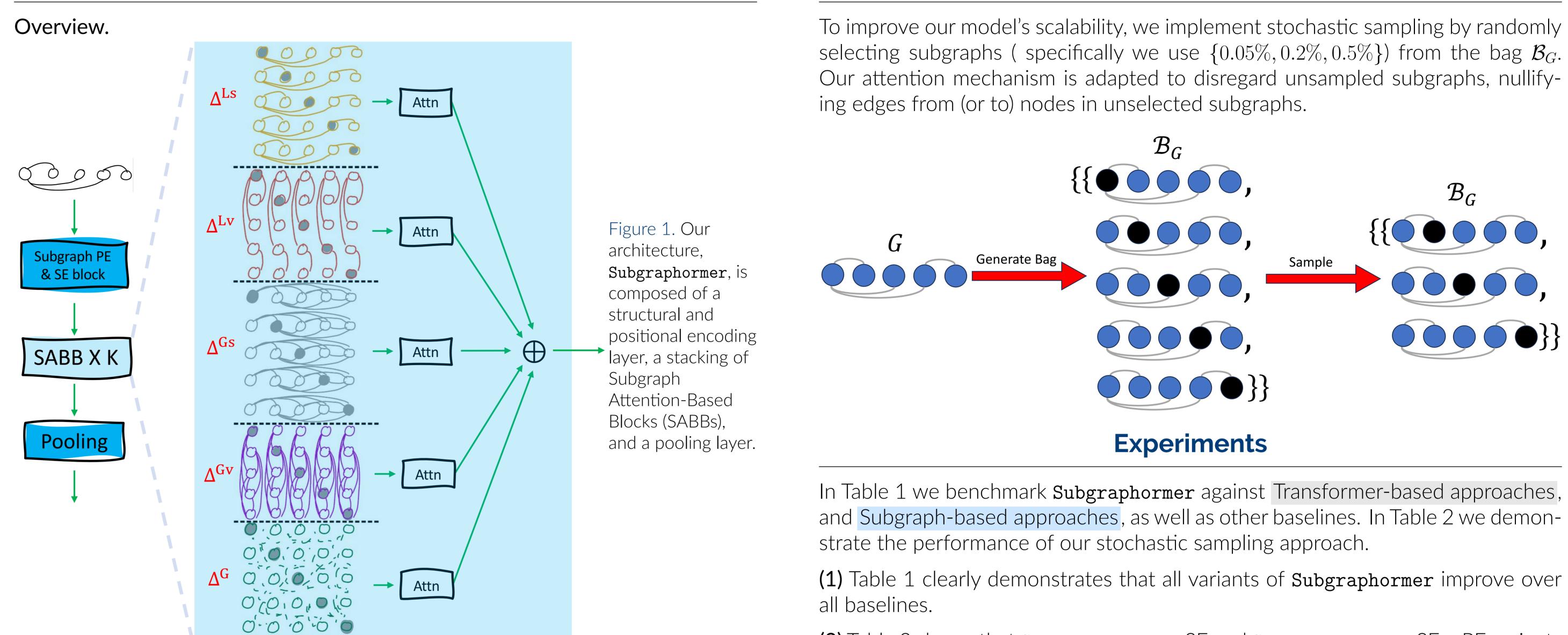
- A graph Transformer model, which builds on insights from Subgraph GNNs, dubbed Subgraphormer.
- 2. A positional and structural encoding scheme tailored to subgraphs, enabling each node to integrate information from multiple subgraphs.

Guy Bar-Shalom¹, Beatrice Bevilacqua², Haggai Maron^{1,3}

Technion¹, Purdue University², NVIDIA Research³

The Subgraphormer Model





Subgraph PE & SE block.

1. Node-Marking. We add a special mark to each node as follows, $x_v^{s;\mathsf{NM}} \leftarrow x_v^s + z_{\mathsf{dist}(s,v)},$

where $z \in \mathbf{R}^d$ is a learnable embedding indexed by the value of the shortest path from s to v in the original Graph.

- 2. Positional Encoding. Based on the original graph's Laplacian eigendecomposition: $L = D - A = U^T \Lambda U$, define $\mathbf{p}_i \triangleq [U_{i1}, \dots, U_{ik}]$, we have, $x_v^{s;\mathsf{PE}} \leftarrow \mathbf{W}_1^{\mathsf{PE}} \mathsf{LeakyReLU}(\mathbf{W}_2^{\mathsf{PE}}[\mathbf{p}_s \oplus \mathbf{p}_v]).$
- 3. Structural Encoding. Based on the original graph's Random Walk operator, **RW** $\triangleq D^{-1}A$, define, $\mathbf{r}_i \triangleq [\mathrm{RW}_{ii}, \mathrm{RW}_{ii}^2, \dots, \mathrm{RW}_{ii}^{k'}]$, we have, $x_v^{s;\mathsf{SE}} \leftarrow \mathbf{W}_1^{\mathsf{SE}}$ LeakyReLU $\left(\mathbf{W}_2^{\mathsf{SE}}\left[\mathbf{r}_s \oplus \mathbf{r}_v\right]\right)$.

The three vectors $x_v^{s;NM}, x_v^{s;PE}, x_v^{s;SE}$ are then concatenated and passed through an **MLP** with one hidden layer, along with a residual connection with $x_v^{s;NM}$.

Subgraph Attention-Based Block. We utilize the GATV2 [2] type layer to calculate the attention matrix α . Our approach particularly focuses on biasing this attention towards the structures of each of the subgraphs, as illustrated in Figure 1. Specifically, the related adjacencies are defined as follows:

Local Subg.-to-Subg. Attention: $\Delta^{\mathsf{Ls}}((s,v),(s',v'),$

Local Node-to-Node Attention: $\Delta^{\mathsf{Lv}} ((s, v), (s', v'), v')$

Global Same Subgraph Attention: $\Delta^{\mathsf{Gs}}((s,v),(s',v'), s', s')$

- Global Same Node Attention: $\Delta^{\mathsf{Gv}}((s,v),(s',v'),$
 - Global Attention: $\Delta^{\mathsf{G}}((s,v),(s',v'),G) = 1$

Pooling. The final pooling layer, ρ is implemented as follows, $\rho(B_G) =$ $\frac{1}{S}\sum_{s=1}^{S} \mathsf{MLP}\left(\sum_{v=1}^{N} x_v^s\right).$

$$G = \begin{cases} \delta_{ss'} & \text{if } v \text{ and } v' \text{ are neighbors in } G \\ 0 & \text{otherwise} \end{cases}$$

$$G = \begin{cases} \delta_{vv'} & \text{if } s \text{ and } s' \text{ are neighbors in } G \\ 0 & \text{otherwise} \end{cases}$$

$$G = \delta_{ss'}$$

$$G = \delta_{vv'}$$

$$G = 1$$

(2) Table 2 shows that Subgraphormer + SE and Subgraphormer + SE + PE variants consistently outperform ESAN [1] across all sampling percentages.

				•
Model	ZINC (Test MAE ↓)	Model		ZINC (Test MAE ↓)
GSN CIN (small) GIN	$\begin{array}{c} 0.101 \pm 0.010 \\ 0.094 \pm 0.004 \\ 0.252 \pm 0.017 \end{array}$	ESAN ESAN ESAN	(100%) (50%) (20%)	0.102 ± 0.003 0.155 ± 0.007 0.166 ± 0.005
SAN URPE GPS Graphormer Graphormer-GD K-Subgraph SAT	$\begin{array}{c} 0.139 \pm 0.006 \\ 0.086 \pm 0.007 \\ 0.070 \pm 0.004 \\ 0.122 \pm 0.006 \\ 0.081 \pm 0.009 \\ 0.094 \pm 0.008 \end{array}$	ESAN Subgraphormer Subgraphormer Subgraphormer Subgraphormer	(5%) (100%) (50%) (20%) (5%)	$\begin{array}{c} 0.179 \pm 0.001 \\\\ 0.064 \pm 0.001 \\\\ \textbf{0.079} \pm \textbf{0.050} \\\\ 0.129 \pm 0.010 \\\\ 0.217 \pm 0.008 \end{array}$
NGNN SUN ESAN OSAN	$\begin{array}{c} 0.111 \pm 0.003 \\ 0.083 \pm 0.003 \\ 0.102 \pm 0.003 \\ 0.154 \pm 0.008 \end{array}$	Subgraphormer + SE Subgraphormer + SE Subgraphormer + SE Subgraphormer + SE	(100%) (50%) (20%) (5%)	$\begin{array}{c} 0.065 \pm 0.002 \\ 0.081 \pm 0.005 \\ 0.121 \pm 0.014 \\ \textbf{0.143} \pm \textbf{0.001} \end{array}$
GNN-AK 0.1 GNN-AK+ 0.0 GNN-SSWL 0.0	$\begin{array}{c} 0.105 \pm 0.010 \\ 0.091 \pm 0.002 \\ 0.082 \pm 0.003 \\ 0.070 \pm 0.005 \end{array}$	Subgraphormer + PE Subgraphormer + PE Subgraphormer + PE Subgraphormer + PE	(100%) (50%) (20%) (5%)	$\begin{array}{c} \textbf{0.062} \pm \textbf{0.002} \\ 0.082 \pm 0.005 \\ 0.130 \pm 0.003 \\ 0.227 \pm 0.012 \end{array}$
Subgraphormer Subgraphormer + SE Subgraphormer + PE Subgraphormer + SE + PE	$\begin{array}{c} 0.064 \pm 0.001 \\ 0.066 \pm 0.003 \\ \textbf{0.062} \pm \textbf{0.002} \\ 0.067 \pm 0.002 \end{array}$	Subgraphormer + SE + PE Subgraphormer + SE + PE Subgraphormer + SE + PE Subgraphormer + SE + PE	(100%) (50%) (20%) (5%)	$\begin{array}{c} 0.067 \pm 0.002 \\ 0.081 \pm 0.006 \\ \textbf{0.114} \pm \textbf{0.005} \\ 0.164 \pm 0.005 \end{array}$

Table 1

our paper and References

Stochastic sampling

Table 2

Derek Lim, Balasubramaniam amurugan, Michael M

networks. 21. ahav. networks?

Figure 2. Paper.

Email: guy.b@campus.technion.ac.il