
A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products
and Graph Coarsening

Guy Bar-Shalom∗1, Yam Eitan∗1, Fabrizio Frasca1, Haggai Maron1,2

1Technion, 2Nvidia, ∗Equal contribution

Subgraph GNNs

Provably expressive Graph Neural Networks (GNNs) that represent graphs as a col-

lection of subgraphs.

Subgraph GNNs
Subgraph GNNs

• How can we learn graph representations?

• Map a graph into a set of subgraphs (bag) via selection policy.

• Process the bag in a principled way, potentially with sharing information
between subgraphs

Subgraph GNNs for better expressivity

MPNN

Subgraph Generation Policy
- Node-deletion
- Node marking
- Edge-deletion
- …

Main drawback: High computational complexity. For node-based policies, the com-

plexity increases significantly— from n nodes up to n2 nodes.

Our Goals

Devise a Subgraph GNN architecture that can flexibly generate and process

variable-sized collection of subgraphs, and deliver strong experimental results.

Subgraph GNNs and Graph Products

Maximally expressive node-based Subgraph GNN [1].

Subgraph GNNs
Maximally Expressive Node-Based Subgraph GNN

!(s, v)t+1 = f t(!(s, v)t, !(v, v)t, {!(s, v′)t}v′ ∼Gv, {!(s′ , v)t}s′ ∼Gs,)

External subgraph
connectivity

Internal subgraph
connectivity

Point-wise Update
Root/Marked node

Connection to Graph Products [2]. Taking G�G gives the internal and external con-

nectivities of the maximally expressive node-based Subgraph GNN.

External subgraph
connectivity

Internal subgraph
connectivity

I ⊗ A A ⊗ I

"G□G = A ⊗ I + I ⊗ A

G1 = (V1, E1)

G2 = (V2, E2)

G1 □ G2

A2 ⊗ I I ⊗ A1"G1□G2
= +

CS-GNN Main Idea

How can we devise a more efficient Subgraph GNN?

Use a coarsening function T .

Apply T (G)�G instead of G�G to get the internal and external connectivities.

Unfortunately, Subgraph GNNs are hindered by substantial computational costs as they necessitate
message-passing operations across all subgraphs within the bag. Typically, the number of subgraphs
is the number of nodes in the graph, n, resulting in a time complexity scaling quadratically (O(n2))
for bounded degree graphs, in contrast to a standard MPNN, whose time complexity is linear in
the number of nodes for such graphs. This significant computational burden becomes impractical
in large graphs, limiting the applicability of Subgraph GNNs to important applications and widely
used datasets. To overcome this challenge, various studies have explored methodologies that process
only a subset of subgraphs from the bag. These methods range from simple random sampling
techniques [8, 4, 41, 3] to more advanced strategies that learn to select the most relevant subset of the
bag to process [5, 20, 30]. However, while random sampling of subgraphs yields subpar performance,
more sophisticated learnable selection strategies also have significant limitations. Primarily, they rely
on discrete sampling during training, which can complicate the training process, as evidenced by the
high number of epochs required to train them [20, 5, 30]. As a result, these methods often allow only
a very small bag size, which only yields modest performance improvements compared to random
sampling and standard MPNNs.

Our approach. The goal of this paper is to devise a Subgraph GNN architecture that can flexibly
generate and process variable-sized subgraph policies, and deliver strong experimental results while
sidestepping intricate and lengthy training protocols. Specifically, our approach aims to overcome the
common limitation of restricting usage to a very small set of subgraphs.

{a, b,
c, d}

a

{e}
a

{f}
a

{a, b,
c, d}

b

{e}
b

{f}
b

{a, b,
c, d}

c

{e}
c

{f}
c

{a, b,
c, d}

d

{e}
d

{f}
d

{a, b,
c, d}

e

{e}
e

{f}
e

{a, b,
c, d}

f

{e}
f

{f}
f

b c d ea f
{e}

{f}

{a, b,
c, d}

=

{a, b,
c, d}#

b
c
d
e

a

f

! "(!)

{e}

{f}

{a, b,
c, d}b

c
d
e

a

f

% %!

{e}

{f}

!(#) #

#

!(#)!(#)#

Figure 1: Product graph construction. Left: Transforming of the
graph into a coarse graph; Right: Cartesian product of the coars-
ened graph with the original graph. The vertical axis corresponds
to the subgraph dimension (super-nodes), while the horizontal
axis corresponds to the node dimension (nodes).

Our proposed method builds
upon and extends an observa-
tion made in [3], which draws an
analogy between using Subgraph
GNNs and performing message-
passing operations over a larger
“product graph”. Specifically,
it was shown that when con-
sidering the maximally expres-
sive Subgraph GNN suggested
by [39], the bag of subgraphs and
its update rules can be obtained
by transforming a graph through
the graph cartesian product of the original graph with itself, i.e. G⇤G, and then processing this result-
ing graph using a standard MPNN. In our approach, we propose to modify the first term of the product
and replace it with a coarsened version of the original graph, denoted T (G), obtained by mapping
nodes to super-nodes (e.g., by applying graph clustering, see Figure 1(left)), making the resulting
product graph T (G)⇤G significantly smaller. This construction is illustrated in Figure 1(right). This
process effectively associates each subgraph with a set of nodes, so that, by controlling the coarsening
function, it allows for both flexible bag sizes and a simple, meaningful selection of the subgraphs.

Bag size

Zi
nc

12
k

(M
AE

)

↑

↑

Full bag
 settingSmall bag

setting

Figure 2: The performance landscape of Subgraph
GNNs with varying number of subgraphs: Our
method leads in the lower bag-size set, outperform-
ing other approaches in nearly all cases. Addi-
tionally, our method matches the performance of
state-of-the-art Subgraph GNNs in the full-bag set-
ting. The full mean absolute error (MAE) scores
along with standard deviations are available in Ta-
ble 9 in the appendix.

While performing message passing on
T (G)⇤G serves as the core update rule in our
architecture, we augment our message passing
operations with another set of operations
derived from the symmetry structure of the
resulting node feature tensor, which we call
symmetry-based updates. Specifically, the
node feature tensor in our case is indexed by
pairs (S, i) where S is a super-node and i is an
original node. Accordingly, X is a 2n ⇥ n⇥ d

(very) sparse tensor, where 2n is the number of
all subsets of the vertex set, and d is the feature
dimension. Interestingly, we find that this object
adheres to a specific set of symmetries, which,
to the best of our knowledge, is yet unstudied
in the context of machine learning: applying
permutation � 2 Sn to the nodes in S and to
i results in an equivalent representation of our
node feature tensor. We formally define the

2

Study the symmetries of the new node feature tensor, X (S, v) to come up with

symmetry-based updates, which are analogous to the point-wise updates.

CS-GNN Symmetry-Based Updates

4.2.2 Derivation of linear equivariant layers for the node feature tensor

Here we will characterize the linear equivariant layers with respect to the symmetry defined above,
focusing on Equation (6). We adopt a similar notation to [22], and note that, in our derivation,
we assume for simplicity that the number of feature channels is d = 1 (extension to multiple
features is straightforward [22]). In addition, our analysis considers the more general case where V T

encompasses all potential super-nodes formed by subsets of [n].

Our main tool is the characterization of linear equivariant layers for permutation symmetries as
parameter-sharing schemes [35, 31, 22]. In a nutshell, this characterization states that the parameter
vectors of the biases, invariant layers, and equivariant layers can be expressed as a learned weighted
sum of basis tensors, where the basis tensors are indicators of the orbits induced by the group action
on the respective index spaces. We focus here on presenting the final results; detailed discussion and
derivations are available in Appendix E. Our main results are summarized in Proposition E.1.

Equivariant bias and invariant layers. The bias vectors as well as the weight vectors defining linear
layers in our space are in R2n⇥n. Hence, we define an equivalence relation ⇠ in the associated index
space {1, . . . , 2n ⇥ n} which, as stated before, corresponds to the orbits under the action of Sn. For
pairs (S, i) 2 (P([n]) ⇥ [n]), �k

+

corresponds to all pairs with |S| = k and i /2 S, and �
k
�

to all
pairs with |S| = k and i 2 S, leading to the following partition:

(P([n])⇥ [n])/⇠ , {�
k
⇤
: k = 1, . . . , n; ⇤ 2 {+,�}}. (7)

This partition effectively splits the indices (S, i) according to the size of S and whether i 2 S. Given
� 2 (P([n])⇥ [n])/⇠, the following is a basis tensor of the bias vector of the invariant layer,

B�

S,i
=

⇢
1, if (S, i) 2 �;
0, otherwise.

(8)

…

…………

…
…

…

…

…

! = #
$ ∈ !

! = #
$ ∉ !

! = '
$ ∈ !

! = '
$ ∉ ! … ! = #

$ ∈ !
! = #
$ ∉ !

…

! = #
$ ∈ !

! = #
$ ∉ !

! = '
$ ∈ !

! = '
$ ∉ !…

! = '
$ ∈ !
! = '
$ ∉ !

Figure 3: Visualization via heatmaps (different colors cor-
respond to different parameters) of the parameter-sharing
scheme determined by symmetries for a graph with n = 6
nodes, zooming-in on the block which corresponds to sets
of size two. Left: Visualization of the weight matrix for
the equivariant basis B�

S1,i1;S2,i2
(a total of 35 parameters in

the block). Right: Visualization of the bias vector for the
invariant basis B�

S,i
(a total of 2 parameters in the block).

Symmetry-based updates reduce parameters more effectively
than previously proposed linear equivariant layers by treating
indices as unordered tuples (see Appendix E.3 for a discus-
sion).

Weight matrices. Following sim-
ilar reasoning, consider elements
(S1, i1, S2, i2) 2 (P([n]) ⇥ [n] ⇥
P([n]) ⇥ [n]). To characterize the
orbits of Sn in this space we define
partitions according to six conditions.
For example, two of these conditions
are the sizes of S1 and S2, which
remain invariant under permutations.
Another condition is the size of the
intersection set S1 \ S2, which also
remains invariant under permutations.
For a thorough discussion and deriva-
tion of the six conditions, please re-
fer to Appendix E. We define ⇠ as
the equivalence relation for these six
conditions. Given an equivalence
class, or orbit, � 2 (P([n]) ⇥ [n] ⇥
P([n])⇥[n])/⇠, we define a basis ten-
sor, B�

2 R2n⇥n⇥2n⇥n by setting:

B�
S1,i1;S2,i2

=

⇢
1, if (S1, i1, S2, i2) 2 �;
0, otherwise.

(9)

A visualization of the two basis vectors, Equations (8) and (9), is available in Figure 3. The following
(informal) proposition summarizes the results in this section (the proof is given in Appendix G),
Proposition 4.1 (Basis of Invariant (Equivariant) Layers). The tensors B� (B�) in Equation (8)
(Equation (9)) form an orthogonal basis (in the standard inner product) of the invariant layers and
biases (Equivariant layers – weight matrix) .

4.2.3 Incorporating symmetry-based updates in our framework

In the previous subsection, we derived all possible linear invariant and equivariant operations that
respect the symmetries of our product graph. We now use this derivation to define the symmetry-based

6

We characterize all equivariant linear

maps L : RP([n])×[n] → RP([n])×[n], where n
is the number of nodes in the graph. We

use a subset of the basis vectors, which

correspond to the following updates:

• Root/Src node 

• Target nodes 
given

(S, v) s.t. v ∈ S

(S, v) all (S′ , v)

#(S, v)

updates in Equation (2), which correspond to the construction of AEquiv and the application of an
MPNN.

To begin, we note that any linear equivariant layer
can be realized through an MPNN [13] applied to a fully
connected graph with appropriate edge features. This is
formally stated in Lemma F.1, the main idea is to encode
the parameters on the edges of this graph (see visualization inset). Thus, the natural construction
of AEquiv corresponds to a fully connected graph, with appropriate edge features derived from the
parameter-sharing scheme we have developed.

{a, b,
c, d}

a

{e}
a

{f}
a

{a, b,
c, d}

b

{e}
b

{f}
b

{a, b,
c, d}

c

{e}
c

{f}
c

{a, b,
c, d}

d

{e}
d

{f}
d

{a, b,
c, d}

e

{e}
e

{f}
e

{a, b,
c, d}

f

{e}
f

{f}
f

However, one of our main goals and guidelines in developing our
flexible framework is to maintain efficiency, and to align with the
maximally expressive GNN, namely GNN-SSWL+ [39, 3], for the
case of a trivial coarsening function, T (G) = G (which correspond
to the full-bag setting). To achieve this, we opt for a sparser choice
by using only a subset of the basis vectors (defined in Equation (9))
to construct AEquiv. Specifically, the matrix AEquiv corresponding to
the chosen subset of basis vectors is visualized inset. To clarify, the nodes (S, v) that satisfy v 2 S

“send messages” (i.e., broadcast their representation) to all the nodes (S0
, v

0) such that v = v
0. In

Section 5, we discuss in greater detail how this relates to GNN-SSWL+. A more formal discussion
regarding our implementation of those symmetry based updates is given in Appendix F.4.

Maintaining sparsity. We note that while our characterization considers all nodes (S, v) 2 (P([n])⇥
[n]), in our specific choice of updates, we applied the updates only to the very sparse set of nodes in
our product graph, i.e., T (G)⇤G. Nevertheless, this sparse update rule still preserves equivariance.
This can be justified by applying a sparsity mask to exclude nodes not in the product graph before
applying the linear equivariant layer over the full set of nodes. See discussion in [1].

Node Marking. While the bias term of the equivariant linear layer is the most natural choice to mark
nodes in the product graph [26, 4, 12], our theoretical analysis in the next section reveals a more
expressive variant, defined as follows,

XS,i

X

j2S

zSPD(i,j) (10)

where SPD(i, j) denotes the shortest path distance between nodes i and j in the original G8. Note
that replacing the sum in Equation (10) with any other invariant aggregator maintains equivariance.

Pooling. After a stacking of layers of the form Equation (2), we employ a pooling layer9 to obtain
a graph representation; switching back to the original notation (from indices i to nodes v) that is,
⇢(X T) = MLPT

⇣P
S

⇣P
n

v=1 X
T(S, v)

⌘⌘
; T denotes the final layer.

5 Theoretical analysis

In this section, we study several theoretical properties of our framework. We start by analyzing
different node marking strategies and then discuss the relation between our method, Subgraph GNNs,
and coarsening-based approaches. Here, we present only the main results, further discussion is
available in Appendices B to D, proofs in Appendix G.

Node marking strategies. The employed node-marking strategy described in Equation (10) consti-
tutes a reasonable, yet specific design choice, but other compelling alternatives are possible. Here
we suggest four natural marking variants and compare them in their expressiveness: Simple Node
Marking ⇡S : element (S, v) is ‘marked’ iff node v is in super-node S; Node + Size Marking ⇡SS :
element (S, v) is ‘marked’ according to ⇡S and, jointly, in a way to encode the size of S; Minimum
Distance (⇡MD): element (S, v) is ‘marked’ with the minimum SPD between v and the nodes in
S; Learned Distance Function ⇡LD (Equation (10)): element (S, v) is ‘marked’ by evaluating a
(learned) permutation invariant function over the set of SPDs between v and the nodes in S.

8To facilitate this, we maintain a lookup table where each index corresponds to a shortest path distance,
assigning a learnable embedding, zSPD(i,j) 2 Rd, to each node (S, i).

9We note that for some of the theoretical analysis, we use: ⇢(X T) = MLPT
�P

S

�
MLPT

�Pn
v=1 X

T(S, v)
���

7

Root/Marked node

Point-wise
Update

• Root/Src node 

• Target nodes 
given

(s, v) s.t. s = v

(s, v) all (s′ , v)

#(s, v)

Experiments

Our method outperforms baseline models in the small bag setting.

Our method matches state-of-the-art Subgraph GNNs in the full bag setting.

a permutation � 2 Sn to the nodes in S and to v results in an equivalent representation of our
node feature tensor. We formally define the symmetries of this object and characterize all the affine
equivariant operations in this space. We incorporate these operations into our message-passing by
encoding the parameter-sharing schemes [30] as additional edge features. These additional update
rules significantly improve experimental results. We note that our symmetry analysis may be useful
for processing bags derived from other high-order generation policies [29, 20] by treating tuples of
nodes as sets.

Inspired by these symmetries and traditional binary-based [4] and shortest path-based [38] node-
marking strategies, we propose four natural marking strategies for our framework. Interestingly,
unlike the full-bag scenario, they vary in expressiveness, with the shortest path-based technique being
the most expressive.

Bag size

Zi
nc

12
k

(M
AE

)

↑

↑

Full bag
 settingSmall bag

setting

Figure 2: The performance landscape of Subgraph GNNs with
varying number of subgraphs: Our method leads in the lower
bag-size set, outperforming other approaches in nearly all cases.
Additionally, our method matches the performance of state-of-the-
art Subgraph GNNs in the full-bag setting. The full mean absolute
error (MAE) scores along with standard deviations are available
in Table 9 in the appendix.

The flexibility and effectiveness
of our full framework are illus-
trated in Figure 2, depicting de-
tailed experimental results on the
popular ZINC-12K dataset [31].
Our method demonstrates a sig-
nificant performance boost over
baseline models in the small bag
setting (for which they are de-
signed), while achieving results
that compare favourably to state-
of-the-art Subgraph GNNs in the
full bag setting. Additionally,
we can obtain results in-between
these two regimes.

Contributions. The main con-
tributions of this paper are: (1)
the development of a novel, flexi-
ble Subgraph GNN framework
that enables meaningful con-
struction and processing of bags
of subgraphs of any size; (2) a
characterization of all affine invariant/equivariant layers defined on our node feature tensors; (3)
a theoretical analysis of our framework, including the expressivity benefits of our node-marking
strategy; and (4) a comprehensive experimental evaluation demonstrating the advantages of the new
approach across both small and large bag sizes, achieving state-of-the-art results, often by a significant
margin.

2 Related work

Original Graph Subgraphs

s

vv

Original Graph

Subgraphs

s

v

v
Subgraph GNNs. Subgraph GNNs [39, 8, 27, 4, 40, 26, 12, 29, 17, 38, 3] rep-
resent a graph as a collection of subgraphs, obtained by a predefined generation
policy. For example, each subgraph can be generated by marking exactly one
node in the original graph (see inset 3) – an approach commonly referred to as
node marking [26]; this marked node is considered the root node in its subgraph.
Several recent papers focused on scaling these methods to larger graphs, starting
with basic random selection of subgraphs from the bag, and extending beyond
with more sophisticated techniques that aim to learn how to select subgraphs. To
elaborate, [5] introduced Policy-Learn (PL), an approach based on two models,
where the first model predicts a distribution over the nodes of the original graph,
and the second model processes bags of subgraphs sampled from this distribution.
MAG-GNN [20] employs a similar approach utilizing Reinforcement Learning.
Similarly to our approach, this method permits high-order policies by associating subgraphs with
tuples rather than individual nodes, allowing for the marking of several nodes within a subgraph.

3The Figure was taken with permission from [3]

3

References
[1] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, Liwei Wang.

A Complete Expressiveness Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests.

ICML 2023.

[2] GBS, Beatrice Bevilacqua, Haggai Maron

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products.

ICML 2024.

